
Knot homology invariants and genus 2 mutation

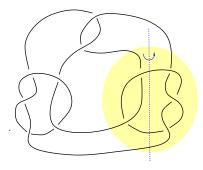
Allison Moore

joint with Laura Starkston The University of Texas at Austin

June 14, 2012

伺 ト イヨト イヨト

Heegaard Floer and Khovanov knot homologies for $K \subset S^3$

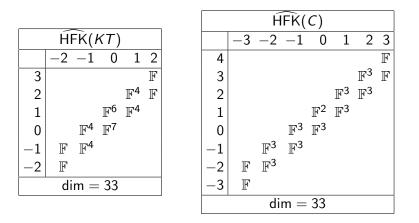

$$K \rightsquigarrow \widehat{\mathsf{CFK}}(K) \rightsquigarrow \widehat{\mathsf{HFK}}$$

$$K \rightsquigarrow \mathsf{CKh}(K) \rightsquigarrow \mathsf{Kh}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

[Ozsváth and Szabó, Rasmussen, Khovanov]

The Kinoshita-Terasaka knot $KT_{2,1}$ as it appears in [4]

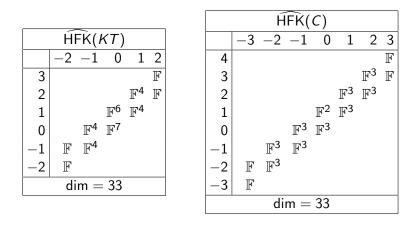

Theorem (Ozsváth and Szabó [4])

 $\widehat{\mathsf{HFK}}(KT_{r,n}) \ncong \widehat{\mathsf{HFK}}(C_{r,n})$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The Kinoshita-Terasak knot $KT_{2,1}$ as it

appears in [4]


Observation

 $\oplus \dim \widehat{HFK}(KT) = \oplus \dim \widehat{HFK}(C)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

э

Observation

$$\oplus \dim \widehat{HFK}(KT) = \oplus \dim \widehat{HFK}(C)$$

イロト イポト イヨト イヨト

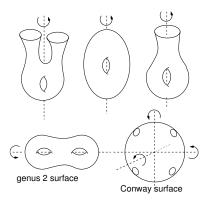
HFK proof

Questions of rank invariance

This observation belongs to a large body of questions about the rank invariance of homology under different mutations, for both knots and manifolds.

Theorem (M. and Starkston)

There exist infinitely many knots admitting a nontrivial genus 2 mutant with the same total dimension in both knot Floer homology and Khovanov homology.

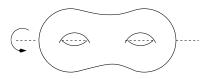

4 3 5 4 3 5

HFK proof

Genus 2 mutation

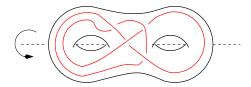
M – compact, orientable 3 manifold.

 (F, τ) – surface equipped with the hyperelliptic involution.


A B > A B >

HFK proof

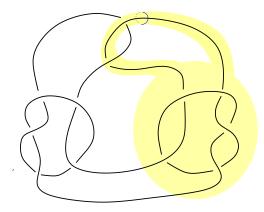
Genus 2 mutation of a manifold


- Cut *M* along *F*.
- Involute F by τ .
- Glue in $\tau(F)$.

Resulting manifold is M^{τ} , a genus 2 mutant of M.

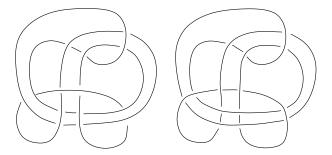
Genus 2 mutation a knot

 $K, F \subset S^3$. K disjoint from F. S^3 is simply connected $\Rightarrow F$ is compressible $\Rightarrow S^3 \cong (S^3)^{\tau}$.



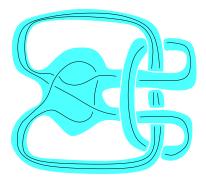
 K^{τ} is the genus 2 mutant of K.

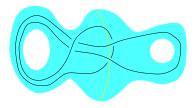
*For us, assume F bounds a handlebody.

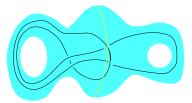

HFK proof

Kinoshita-Terasaka/Conway mutants again

Conway mutants can always be obtained from genus 2 mutation (sometimes requires two mutations).

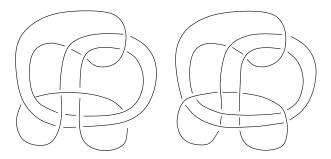

Genus 2 mutant pair




These genus 2 mutant knots are not Conway mutants.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

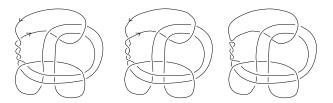
Mutation surface



・ロン ・四 と ・ ヨン ・ ヨン

э

Genus 2 mutant pair

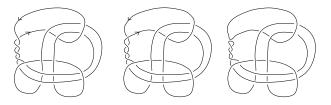


・ロン ・四 と ・ ヨン ・ ヨン

æ

HFK proof

Infinite family parameterized by half-twists

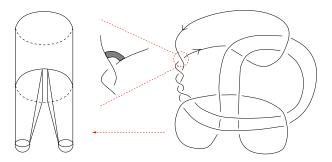

These knots have special properties....

HFK proof

э

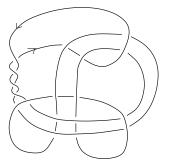
- 4 同 2 4 日 2 4 日 2

Special property: Skein triples


 $(K_n, K_{n-2}, unlink)$

HFK proof

э

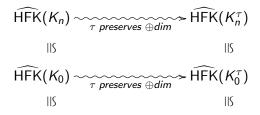

・ 同 ト ・ ヨ ト ・ ヨ ト

Special property: K_n is slice

HFK proof

Special property: K_n is slice

$|\tau| \leq g_*(K_n) = 0$

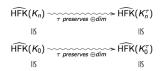

・ 同 ト ・ ヨ ト ・ ヨ ト

That's Ozsváth and Szabó's τ , not the mutation τ !

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

What our theorem shows:

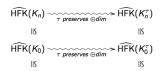


$K_0 = 14^n_{22185}$						
	-2	-1	0	1	2	
3					F	
3 2				\mathbb{F}^2	\mathbb{F}	
1			\mathbb{F}^2	\mathbb{F}^2		
0		\mathbb{F}^2	\mathbb{F}^3			
$^{-1}$	F	\mathbb{F}^2				
-2	F					
dim = 17						

$K_0^{\tau} = 14_{22589}^n$						
	-1	0	1			
1			\mathbb{F}^2			
0		₽ ⁵ ₽ ⁴	\mathbb{F}^2			
-1	\mathbb{F}^2	\mathbb{F}^4				
-2	\mathbb{F}^2					
dim = 17						

Allison Moore Knot homology invariants and genus 2 mutation

We need 3 tools from Ozsváth and Szabó. [4],[5]

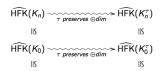

$1 \ \tau(K_n) = 0$

- 2 Spectral sequence $\widehat{HFK}(K) \rightsquigarrow \widehat{HF}(S^3).$
- 3 Skein exact sequence of HFK.

Compare with Hedden, Watson, others [3][6].

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We need 3 tools from Ozsváth and Szabó. [4],[5]



- $1 \ \tau(K_n) = 0$
- 2 Spectral sequence $\widehat{HFK}(K) \rightsquigarrow \widehat{HF}(S^3)$.
- 3 Skein exact sequence of HFK.

Compare with Hedden, Watson, others [3][6].

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

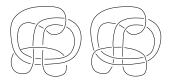
We need 3 tools from Ozsváth and Szabó. [4],[5]

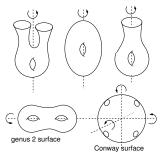
- $1 \ \tau(K_n) = 0$
- 2 Spectral sequence $\widehat{HFK}(K) \rightsquigarrow \widehat{HF}(S^3)$.
- 3 Skein exact sequence of HFK.

Compare with Hedden, Watson, others [3][6].

伺 ト イヨト イヨト

Getting technical:


・ロン ・部 と ・ ヨ と ・ ヨ と


æ

Open questions abound

Manifolds: total rank?

Knots: total rank?

Jean-Marie Droz.

A program calculating the knot Floer homology. http://user.math.uzh.ch/droz/.

Nathan M. Dunfield, Stavros Garoufalidis, Alexander Shumakovitch, and Morwen Thistlethwaite.

Behavior of knot invariants under genus 2 mutation. *New York J. Math.*, 16:99–123, 2010.

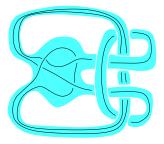
Matthew Hedden and Liam Watson.

On the geography and botany of knot Floer homology, Preprint.

Peter Ozsváth and Zoltán Szabó.

Knot Floer homology, genus bounds, and mutation. *Topology Appl.*, 141(1-3):59–85, 2004.

Peter Ozsváth and Zoltán Szabó.


On the skein exact squence for knot Floer homology. http://arxiv.org/abs/0707.1165, 2007. arXiv:0707.1165v1 [math.GT].

Liam Watson.

Knots with identical Khovanov homology. Algebr. Geom. Topol., 7:1389–1407, 2007.

Thank you!

moorea8@math.utexas.edu http://arxiv.org/abs/1204.2524