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Abstract. Using Hirasawa-Murasugi’s classification of fibered Mon-
tesinos knots we classify the L-space Montesinos knots, providing fur-
ther evidence towards a conjecture of Lidman-Moore that L-space knots
have no essential Conway spheres. In the process, we classify the fibered
Montesinos knots whose open books support the tight contact structure
on S

3. We also construct L-space knots with arbitrarily large tunnel
number and discuss the question of whether L-space knots admit es-
sential tangle decompositions in the context of satellite operations and
tunnel number.

1. Introduction

From the algebraic viewpoint of Heegaard Floer homology, L-spaces are the
“simple” 3–manifolds. They are the rational homology spheres with rank

as small as possible, i.e. the manifolds Y such that rk ĤF (Y ) = |H1(Y ;Z)|.
These include S3, the lens spaces (except S1 × S2), the other elliptic man-
ifolds, many Seifert fibered spaces, as well as many hyperbolic manifolds
[OS05]. One way to construct examples of L-spaces is through “bootstrap-
ping” a known L-space surgery on a knot. It follows from the Heegaard
Floer surgery exact triangle that if r > 0 surgery on a knot K in S3 is an
L-space, then for every number s ≥ r the result of s–surgery on K is also an
L-space [OS05]. Capturing this, a knot K in S3 admitting a positive Dehn
surgery to an L-space is known as an L-space knot.

So which knots are L-space knots? This question would be answered with
a geometric characterization. Already established are the fiberedness [Ni07]
and support of the tight contact structure [Hed10, Corollary 1.4 with Propo-
sition 2.1] for L-space knots. Using these properties, the structure of the
Alexander polynomial of an L-space knot [OS05], and the determinant-genus
inequality for L-space knots [LM13, Lemma 5] we further probe a conjecture
about geometric decompositions of L-space knots.

Conjecture 18 (Lidman-Moore [LM13]). An L-space knot has no essential
Conway sphere.

To do so, we first extend the results and techniques of [LM13] to obtain a
classification of the L-space knots among the Montesinos knots.
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Theorem 1. Among the Montesinos knots, the only L-space knots are the
pretzel knots P (−2, 3, 2n+1) for n ≥ 0 and the torus knots T (2, 2n+1) for
n ≥ 0.

It turns out that generalizing from pretzel knots to Montesinos knots yields
no new L-space knots than the ones already obtained in [LM13] and thus
continues to support Conjecture 18.

As a byproduct of our proof, we obtain a classification of fibered Mon-
tesinos knots that support the tight contact structure. The statement of
the following theorem uses the conventions of Hirasawa-Murasugi for the
notation of Montesinos links [HM06] which we review at the beginning of
section 2.3.

Theorem 2. A fibered Montesinos knot that supports the tight contact struc-
ture is isotopic to either

• M( −d1
2d1+1 , . . . ,

−dr
2dr+1

∣∣1) for some set of positive integers d1, . . . , dr
such that d1 + · · ·+ dr is even, or

• M( −m1

m1+1 , . . . ,
−mr

mr+1

∣∣2) for some odd integer m1 ≥ 1 and even integers
m2, . . . ,mr ≥ 2.

Moreover, the knot with its fiber may be obtained from the disk by a sequence
of Hopf plumbings.

These two families of fibered Montesinos knots are illustrated with their
fibers in Figure 1.

Figure 1. The two families of fibered Montesinos knots that
support the tight contact structure.

These two theorems will be proven in section 3 with a discussion of the
general strategy in section 3.1. Lemma 7 recalls the corresponding result
for two-bridge knots. Then our arguments split according to Hirasawa-
Murasugi’s partition of Montesinos knots into odd and even types.

Proof of Theorem 2. Lemma 7 handles two-bridge knots. Proposition 8 pro-
duces the first family for odd type Montesinos knots; Proposition 13 pro-
duces the second family for even type Montesinos knots. �
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Proof of Theorem 1. Lemma 7 shows the L-space two-bridge knots are the
T (2, 2n+1) torus knots for n ≥ 0. We then restrict attention to Montesinos
knots of length at least 3 (since those of shorter length are two-bridge).
Then, among these knots, Proposition 12 shows there are no L-space knots
of odd type and Proposition 15 shows that those of even type are the pretzel
knots P (−2, 3, 2n + 1) for integers n ≥ 0. �

Thereafter, in section 4, we generalize Conjecture 18.

Conjecture 19. L-space knots have no essential tangle decomposition.

We examine this conjecture in the contexts of satellite L-space knots and
tunnel numbers of L-space knots and pose a few questions.

2. Preliminaries

2.1. Open books. We refer the reader to the lecture notes [Etn06] of Et-
nyre for a useful survey on the basics of open books and contact structures.
Nevertheless, let us remind the reader of a few items.

An open book for an oriented 3–manifold Y is a link L with a fibration of its
complement φ : Y −L → S1 such that a fiber F = φ−1(0) is a Seifert surface
for the link, ∂F = L. Since the binding of an open book is an oriented
fibered link, we may simply speak of the fibered link (up to orientation
reversal of all the components) since a fiber and hence the fibration will be
understood. Each open book for a 3–manifold induces a contact structure on
that manifold [TW75]; more precisely, it supports a unique contact structure
[Gir02]. Contact structures on 3–manifolds can either be tight or overtwisted.
On S3 there is a unique tight contact structure.

The positive and negative Hopf bands, H+ and H−, are shown in Figure 2
left and center. Let us say a Seifert surface contains a positive or negative
Hopf band if one may be deplumbed from the surface.

Following [Yam07], an essential simple closed curve in a Seifert surface is a
twisting loop if it bounds a disk in the manifold with the same framing as the
Seifert surface. For example, the connected sum of a positive and negative
Hopf band contains a twisting loop, shown in Figure 2 right.

Lemma 3. Let F be a fiber of an open book.

• If F contains a positive Hopf band, then its open book supports the
same contact structure as the open book obtained by deplumbing that
positive Hopf band, [Gir02].

• If F contains a negative Hopf band, then its open book supports an
overtwisted contact structure, e.g. [Etn06].
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Figure 2. The positive and negative Hopf bands, and their
connected sum contains a twisting loop as shown.

• If F contains twisting loop, then its open book supports an over-
twisted contact structure, [Yam07, Theorem 1.1]. �

Figure 3. When a surface laterally encounters a twist re-
gion, there is a sequence of “obvious deplumbings”. Shown on
the left is a vertical twist region of 6 negative half-twists from
which 5 negative Hopf bands are successively deplumbed.

2.2. A basic sequence of deplumbings.

Lemma 4. Let F be a Seifert surface for a link L with a sequence of n half-
twists in L as shown in the left side of Figure 3 for n = −6. If n ≥ 2, then
F contains n− 1 positive Hopf bands which may be successively deplumbed,
leaving a single positive half twist. lf n ≤ −2, then F contains |n|−1 negative
Hopf bands which may be successively deplumbed, leaving a single negative
half twist.

Proof. The case of n = −6 is shown in Figure 3 and makes an inductive
proof clear. Mirror the figure for positive n. �

2.3. Montesinos knots and links. As stated in the introduction, we fol-
low the conventions of Hirasawa-Murasugi for our notation [HM06]. A Mon-
tesinos link K is denoted

K = M

(
β1
α1

,
β2
α2,

. . . ,
βr
αr

, | e

)

where αi > 1, |βi| < αi, and gcd(αi, βi) = 1. The number r is the length
of the Montesinos link. As an illustration, Figure 4 shows the length 3
Montesinos knot M(34 ,−

2
5 ,

1
3 |3).
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Figure 4. Two isotopic presentations of the Montesinos
knot M(34 ,−

2
5 ,

1
3 |3).

If the Montesinos link K above is a knot then at most one of α1, . . . , αr is
even. (Note that this is not a sufficient condition for being a knot.) By
an isotopy of K, one may cyclically permute indices so that α2, . . . , αr are
all odd. With this setup, Hirasawa-Murasugi then partition Montesinos
knots into odd types and even types according to whether or not α1 is odd.
Hirasawa-Murasugi’s Theorems 3.1 and 3.2 describe both the genera and
fiberedness of Montesinos knots for odd types and even types, respectively
[HM06].

Notation: In this article we will write, for example, O(II-3-ii) to refer to
condition (II)(3)(ii) of Theorem 3.1 and E(III-i) to refer to condition (III)(i)
of Theorem 3.2 of Hirasawa-Murasugi [HM06].

Hirasawa-Murasugi use special forms of continued fractions for the terms βi

αi

in the notation of a Montesinos knot to describe minimal genus Seifert sur-
faces. They define the continued fraction S = [x1, x2, . . . , xm] for a rational

number β
α
with −α < β < α as the expression

β

α
=

1

x1 −
1

x2 −
1

. . . −
1

xm
where every coefficient xi is non-zero. The continued fraction S is said to
be even if each coefficient xi is even. The continued fraction S is said to be
strict if for each odd j both (a) xj is even and (b) if xj = ±2 then xj+1 has
the opposite sign.

We will also need the determinant of a Montesinos knot. This can be calcu-
lated as the order of the first homology of the double branched cover of the
knot. Using [Sav02] as a reference and making adjustments for differences
in notation, one obtains the following.

Lemma 5. The determinant of the Montesinos knot K = M
(

β1

α1
, β2

α2,
. . . , βr

αr
| e
)

is

det(K) =

∣∣∣∣∣
r∏

i=1

αi

(
e+

r∑

i=1

βi
αi

)∣∣∣∣∣ .
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3. Proofs of Theorems 1 and 2

3.1. Strategy of proof of Theorem 1. Recall the fundamental properties
of L-space knots noted in the introduction:

• The non-zero coefficients of the Alexander polynomial of an L-space
knot are ±1 and alternate in sign [OS05].

• An L-space knot K of genus g(K) satisfies the determinant-genus
inequality: det(K) ≤ 2g(k) + 1, [LM13, Lemma 5].

• An L-space knot is fibered [Ni07].

• An L-space knot supports the tight contact structure; that is, it
is a fibered strongly quasipositive knot [Hed10, Corollary 1.4 with
Proposition 2.1].

These properties suggest a general strategy for identifying L-space knots
among some collection of knots. Briefly, the strategy is: (1) select the
knots in the collection which are fibered and (2) support the tight contact
structure, (3) cull the knots which do not satisfy the determinant-genus in-
equality, and (4) discard those whose Alexander polynomials do not have the
correct form. Ideally, at this stage the remaining knots may be recognized
as L-space knots; but if not, (5) compute the knot Floer homology of the
knots or the Heegaard Floer homology of large surgeries on the knots.

Following this strategy for the proof of Theorem 1, we (1) appeal to Hirasawa-
Murasugi’s classification of fibered Montesinos knots [HM06] and then (2)
cull those that either admit a Stallings twist or may have a negative Hopf
band deplumbed (since by Lemma 3 these indicate that a fibered knot sup-
ports an overtwisted contact structure). At this point we certify that the
remaining knots indeed do support the tight contact structure by showing
they can all be obtained by successive plumbings of positive Hopf bands.
This completes stage (2) of the strategy producing two manageable families
of Montesinos knots. (Truth be told, one of these two families are identifiable
as pretzel knots, so we simply invoke the results of [LM13]. Nevertheless,
one could continue with the strategy instead.) Stage (3) then follows in a
more-or-less straightforward calculation from formulae for the determinant
of Montesinos knots which significantly reduces the set of Montesinos knots
to be considered. For stage (4), computations of the Alexander polynomials
are then sufficient to rule out all the knots that are not already known to
be L-space knots. Fortunately, stage (5) is unnecessary.

Observe that stage (2) of the strategy produces the collection of fibered
Montesinos knots that support the tight contact structure, Theorem 2. As
a consequence of [Hed10, Corollary 1.4 with Proposition 2.1], this collec-
tion also describes the set of fibered Montesinos knots which are strongly
quasipositive.
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Question 6. Which non-fibered Montesinos knots are strongly quasiposi-
tive?

3.2. Two-bridge knots and links. Montesinos links of length r = 1 or 2
are two-bridge links.

Lemma 7. The fibered two-bridge links that support the tight contact struc-
ture are the torus links T (2, N) for integers N ≥ 1.

The L-space two-bridge knots are the torus knots T (2, 2n + 1) for integers
n ≥ 0.

Proof. We offer a quick sketch. Fibered two-bridge knots and links are well-
known to be obtained as a linear chain of plumbings of positive and negative
Hopf bands (e.g. [GK90]); they have corresponding continued fraction ex-
pansions where each coefficient is ±2. Among these, only those built from
positive Hopf bands support the tight contact structure on S3 (Lemma 3),
and these happen to be the torus links T (2, N) for integers N ≥ 1. When
N = 2n + 1 is odd, these torus links are knots and (2N − 1)–surgery is a
lens space. Thus the fibered two-bridge knots that support the tight contact
structure are the L-space two-bridge knots. �

Alternatively, since two-bridge knots are alternating [Goo72], Theorem 1.5
of [OS05] implies that the only two-bridge knots admitting L-space surgeries
are those which are isotopic to a torus knot T (2, 2n + 1) for some integer
n.

We will henceforth assume that r ≥ 3.

3.3. Odd fibered Montesinos knots.

Proposition 8. Let K be an odd fibered Montesinos knot supporting the
tight contact structure. Then for some set of positive integers d1, . . . , dr
such that d1 + · · ·+ dr is even,

K = M( −d1
2d1+1 , . . . ,

−dr
2dr+1 |1).

Moreover, the fiber of K, shown on the left side of Figure 1, is a positive
Hopf plumbing.

Proof. Let K be a fibered Montesinos knot of odd type. By Theorem 3.1 of
Hirasawa-Murasugi [HM06], we may assume that e 6= 0 and each βi/αi has
a strict continued fraction expansion

Si = [2a
(i)
1 , b

(i)
1 , . . . , 2a(i)qi

, b(i)qi
]

where |a
(i)
j | = 1 or 2 for all i, j and a

(i)
1 has sign opposite e. Note that

strictness of Si implies that if |a
(i)
j | = 1, then a

(i)
j and b

(i)
j differ in sign. The

fiber F of K appears as in Figure 10 of [HM06].
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Figure 5. When a
(i)
j = 1 a negative Hopf band can be

found. Left: j = 1 after an isotopy of the surface. Right:
j > 1.

(For notational purposes, one may care to define b
(i)
0 as −e. Indeed, for each

i, there is an isotopy of F so that the e twist region plays the role of a b
(i)
0

twist region.)

In accordance with Lemma 3, we assume that F has no negative Hopf bands.
Immediately Lemma 4 gives

(∗) either e = +1 or e < 0 and either b
(i)
j = −1 or b

(i)
j > 0.

Claim 9. For each i, |a
(i)
j | = 1 implies a

(i)
j = −1, b

(i)
j > 0, and either

b
(i)
j−1 = −1 or e = +1 if j − 1 = 0.

Proof. First assume a
(i)
j = +1. Then b

(i)
j < 0 by the strictness of Si. If

j = 1, then O(II-2-i) implies e < 0. An isotopy of the fiber moves one of
the e half-twists into the position shown in Figure 5 where a negative Hopf

band is found. If j > 1, then O(II-3-i) implies b
(i)
j−1 > 0. Thus near the

a
(i)
j twists, the surface locally appears as in Figure 5 where a negative Hopf

band is evident. Thus a
(i)
j = −1. The strictness of Si then implies b

(i)
j > 0.

Condition O(II-3-i) with (∗) then implies b
(i)
j−1 = −1. �

Claim 10. For each i, |a
(i)
j | = 2 implies a

(i)
j = −2, b

(i)
j = −1, either

b
(i)
j−1 = −1 or e = +1 if j − 1 = 0.

Proof. First observe that if a
(i)
j = −2, the remaining conditions follow from

O(II-3-ii), O(II-2-ii), and (∗).

Let j be the last index for which a
(i)
j = +2. If j > 1, then O(II-3-ii) implies

b
(i)
j > 0 and b

(
j−1i) > 0. If j = 1, then O(II-2-ii) implies b

(i)
j > 0 and e < 0.

In either case, Claim 9 and the first sentence of this proof then imply that
j must be the final index of Si. When j = 1, an isotopy of the fiber moves
one of the e half-twists into the position shown in Figure 6 where a negative
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Figure 6. When a
(i)
j = 2 and j is the final index, a negative

Hopf band can be found. Left: j = 1 after an isotopy of the
surface. Right: j > 1.

Hopf band is found. When j > 1, the surface locally appears near the a
(i)
j

twists as in Figure 6 where a negative Hopf band is evident. �

Let (−4,−1)[n] denote the sequence −4,−1,−4,−1, . . . ,−4,−1 of length
2n. Together Claims 9 and 10 then imply that e = +1 and for each
strict continued fraction Si, either Si = [(−4,−1)[n]] for n ≥ 1 or Si =

[(−4,−1)[n],−2, di] for n ≥ 0 and di > 0. Observing the equivalence
[. . . ,−4,−1] = [. . . ,−2,+1], we may assume the latter of these holds for
Si. Figure 8 then shows how to transform Si into the strict continued frac-
tion [−2, di] for some integer di > 0. Note that [−2, di] = −di

2di+1 . Thus
any odd type fibered Montesinos knot without negative Hopf bands may be
expressed as

K = M( −d1
2d1+1 , . . . ,

−dr
2dr+1 |1)

for some set of positive integers d1, . . . , dr.

Figure 1 (left) illustrates Montesinos links of the formM( −d1
2d1+1 , . . . ,

−dr
2dr+1 |1).

Performing a particular crossing change in each factor transforms this link
to M(−d1, . . . ,−dr|1) which may be recognized as the torus link T (d1 +
· · ·+ dr − 1, 2). Thus this link, and hence K above, is a knot precisely when
d1 + · · · + dr is even.

To show that such a fibered knot actually supports the tight contact struc-
ture, we show that positive Hopf bands can be successively deplumbed from
a fiber until a single positive Hopf band is obtained. Indeed, beginning from
Figure 1 (left), apply Lemma 4 to obtain a sequence of deplumbings that
transform each di down to 1. This results in the odd type fibered Montesinos
link M(−1

3 ,−
1
3 , . . . ,−

1
3 |1) of length r. As demonstrated in Figure 7, each

−1
3 signifies a positive Hopf band that may be deplumbed, deleting that

term from the notation. After r−1 steps, we are left with the link M(−1
3 |1)

which is itself a positive Hopf band. Reversing this process exhibits the fiber
of our original knot as a successive Hopf plumbing. �
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Figure 7. M(−1
3 ,−

1
3 , . . . ,−

1
3 |1) has a positive Hopf band

that may be deplumbed.

Figure 8. An isotopy illustrating the equivalence [. . . , a −
2,−1,−2, d] = [. . . , a, d+ 1]

Lemma 11. Let K be an odd fibered Montesinos knot supporting the tight
contact structure. Then det(K) > 2g(K) + 1 unless K = M(13 ,

1
3 ,

2
5 |1).

Proof. By Theorem 3.1 [HM06], an odd fibered Montesinos knotK has genus

g(K) =
1

2

(
r∑

i=1

b(i) + |e| − 1

)

where

b(i) =

qi∑

j=1

b
(i)
j .

By Proposition 8, the parameters of any such K supporting the tight contact
structure are r ≥ 3, e = +1 and βi

αi
= −di

2di+1 = [−2, di] for some integers

di > 0, for all i = 1, . . . , r (i.e. qi = 1 for all i). Thus,

2g(K) + 1 =

r∑

i=1

di + 1.

Using Lemma 5, we have

det(K) = 2r
r∏

i=1

(di +
1

2
)

∣∣∣∣∣1−
r∑

i=1

di
2di + 1

∣∣∣∣∣ .
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Since di > 0 for all i, then

(†)
r

2
>

r∑

i=1

di
2di + 1

≥
r

3
.

When r > 3, r
3 > 1 and applications of (†) then gives

2r

∣∣∣∣∣1−
r∑

i=1

di
2di + 1

∣∣∣∣∣ = 2r

(
r∑

i=1

di
2di + 1

− 1

)
≥ 2r

(r
3
− 1
)
> 1.

Hence

det(K) >
r∏

i=1

(di +
1

2
) >

r∑

i=1

di + 1 = 2g(K) + 1.

When r = 3, then

det(K) = 8

3∏

i=1

(di +
1

2
)

∣∣∣∣∣1−
3∑

i=1

di
2di + 1

∣∣∣∣∣ .

If 1 ≥
∑3

i=1
di

2di+1 , then necessarily d1 = d2 = d3 = 1 and det(K) = 0.

However M(13 ,
1
3 ,

1
3 |1) is a two component link rather than a knot.

Otherwise, at least one of d1, d2, d3 is greater than 1. Thus
∣∣∣1−

∑3
i=1

di
2di+1

∣∣∣ ≥
1
15 and det(K) ≥ 8

15

∏3
i=1(di +

1
2) with equality only when {d1, d2, d3} =

{1, 1, 2}.

If d1, d2, d3 ≥ 2 or if d1 = 1 and d2, d3 ≥ 3, then

det(K) >
8

15

3∏

i=1

(di +
1

2
) >

3∑

i=1

di + 1 = 2g(K) + 1.

Otherwise, the triple {d1, d2, d3} is one of {1, 1, 2}, {1, 1, 3}, {1, 2, 2} or
{1, 2, 3}. The triples {1, 1, 3} and {1, 2, 2} correspond with two compo-
nent links rather than knots. An explicit computation for the remaining
two triples finishes the proof. For the triple {1, 2, 3}, we have det(K) = 17
while 2g(K) + 1 = 7. For the triple {1, 2, 3}, we have det(K) = 3 while
2g(K) + 1 = 5. This last one gives the knot stated in the theorem. �

Proposition 12. No odd type Montesinos knot (of length r ≥ 3) is an
L-space knot.

Proof. Since L-space knots are fibered knots that support the tight contact
structure and satisfy the determinant-genus bound, Lemma 11 identifies
M(13 ,

1
3 ,

2
5 |1) as the single candidate for an L-space knot among the odd

type Montesinos knots (since we assumed throughout that r ≥ 3). This
knot may be identified as the knot 10145 in the Rolfsen table. Its Alexander
polynomial is ∆10145(t) = t2 + t − 3 + t−1 + t−2. This fails the Alexander
polynomial condition for L-space knots. �
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3.4. Even fibered Montesinos knots.

Proposition 13. Let K be an even fibered Montesinos knot supporting the
tight contact structure. Then for some set of positive integers m1, . . . ,mr

with r ≥ 3,

K = M( −m1

−m1+1 , . . . ,
−mr

−mr+1 |2).

Moreover, the fiber of K, shown on the right side of Figure 1, is a positive
Hopf plumbing.

Proof. Let K be a fibered Montesinos knot of even type. By Theorem 3.2 of
Hirasawa-Murasugi [HM06], we may assume that e is even and each βi/αi

has an even continued fraction expansion

Si = [2c
(i)
1 , 2c

(i)
2 , 2c

(i)
3 , . . . , 2c(i)mi

].

The fiber F of K appears as in Figure 12 or Figure 13 of [HM06] depending
on whether e 6= 0 or e = 0 respectively. (Since K is a knot, we may further
assume that m1 is odd and mi is even for i > 1, but we will not use this.
The following arguments apply equally well to any fibered Montesinos link
with fiber F as in Figure 12 or Figure 13 of [HM06]; indeed the proof of the
conditions for fiberedness in Theorem 3.2 of [HM06] do not rely upon the
connectedness of K.)

Assume e = 0. Then since we assume r ≥ 3, conditions E(II-i) and E(III)

guarantee there exists an index i such that (c
(i)
1 , c

(i+1)
1 ) = ±(1,−1). Then,

referring to Figure 13 of [HM06] for the surface F , there is an unknot C in

F running once through each of the bands corresponding to c
(i)
1 and c

(i+1)
1

such that C is 0–framed by F . In particular C is a twisting loop in F . By
Lemma 3 any such knot supports an overtwisted contact structure, and thus
we conclude e 6= 0.

Since e 6= 0 and K is fibered, E(I) implies that e = ±2. Referring to Figure
12 of [HM06] for the surface F , it is readily apparent that F contains a
negative Hopf band if e = −2 and a positive one if e = 2. Due to Lemma 3,
we must have e = 2.

Condition E(I) with Lemma 3 (and Lemma 7 and its proof) then further

imply c
(i)
j = −1 for all i, j so that for each i we have the continued fraction

Si = [−2,−2, . . . ,−2] of length mi. This in turn implies βi

αi
= −mi

mi+1 . Thus
we have the fibered Montesinos knot

K = M( −m1

m1+1 , . . . ,
−mr

mr+1 |2)

for some set of positive integers m1, . . . ,mr, which appears as in the right
side of Figure 1. Furthermore the fiber F may be assembled by beginning
with the positive Hopf band corresponding to the e = 2 twists and then
plumbing on to it a linear chain of mi positive Hopf bands for each i. Hence



MONTESINOS KNOTS, HOPF PLUMBINGS, AND L-SPACE SURGERIES 13

the fibered knot is a positive Hopf plumbing and supports the tight contact
structure. �

Lemma 14. We have the following equivalence between Montesinos links
and pretzel links. For any positive integers m1, . . . ,mr,

M( −m1

m1+1 , . . . ,
−mr

mr+1 |2) = P (m1 + 1, . . . ,mr + 1, −1, . . . ,−1

r−2

)

Proof. Since −mi

mi+1 = −1 + 1
mi+1 , the Montesinos link M( −m1

m1+1 , . . . ,
−mr

mr+1 |2)

is the pretzel link P (−1,m1 + 1, . . . ,−1,mr + 1, 1, 1) as shown in the right
side of Figure 1. By flype moves, P (−1,m1 + 1, . . . ,−1,mr + 1, 1, 1) is
isotopic to the pretzel link P (m1 + 1, . . . ,mr + 1, −1, . . . ,−1

r−2

). �

Proposition 15. The only even type Montesinos knots (of length r ≥ 3)
that are L-space knots are the pretzel knots P (−2, 3, 2n + 1) for integers
n ≥ 0.

Proof. Since L-space knots must be fibered knots that support the tight
contact structure, Proposition 13 restricts the candidates for L-space knots
among the even type Montesinos knots to those of the formM( −m1

−m1+1 , . . . ,
−mr

−mr+1 |2)
for positive integers m1, . . . ,mr with r ≥ 3. Lemma 14 shows that these
Montesinos knots are actually pretzel knots. According to [LM13], the
only L-space pretzel knots (that are not two-bridge knots) are the pret-
zel knots P (−2, 3, 2n + 1) for integers n ≥ 0. Noting that P (−2, 3, 2n + 1)
and P (2, 3, 2n + 1,−1) are isotopic pretzel knots completes the proof. �

Remark 16. One could obtain Proposition 15 without appealing to [LM13].
Proceeding with the general procedure as we did for the odd type Montesinos
knots, one may cull the knots from Proposition 13 with the determinant-
genus relation. This shows that if K is an even fibered Montesinos knot sup-
porting the tight contact structure such that det(K) ≤ 2g(K)+1, then K =

M
(

−m1

m1+1 ,
−m2

m2+1 ,
−m3

m3+1 |2
)

where (m1,m2,m3) ∈ {(5, 2, 2), (3, 2, 2), (3, 2, 4),

(1, 4, 4), (1, 4, 6), (1, 2, 2c)} for positive integers c. The Alexander polynomi-
als of these first five of these knots have coefficients that are greater than one
in absolute value; hence those knots cannot be L-space knots. The remain-
ing family of knots is the desired family of pretzel knots P (−2, 3, 2n+1) for
non-negative integers n.

4. On essential tangle decompositions of L-space knots

A knot K in 3–manifold Y has an essential n–string tangle decomposition if
there is an embedded sphere Q that transversally intersects K in 2n points
such that the planar surface Q − ∂N (K) is essential in the knot exterior
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Y −N (K), i.e. Q− ∂N (K) is both incompressible and ∂–incompressible. If
K has no essential n–string tangle decomposition, then K is called n–string
prime.

Observe that a 1–string prime knot is simply a prime knot.

Theorem 17 (Krcatovich [Krc13]). L-space knots are prime knots.

A Conway sphere for a knot (or link) is a sphere Q transversally intersecting
the knot in 4 points. Hence a 2–string prime knot is a knot without any
essential Conway spheres. Thus the first conjecture from the introduction
may be rephrased as follows:

Conjecture 18 (Lidman-Moore [LM13]). L-space knots are 2-string prime.

Since Montesinos knots generalize pretzel knots, and those with length r ≥ 4
have essential 2–string tangle decompositions (for example, a sphere sepa-
rating two adjacent factors from the remaining r− 2 is an essential Conway
sphere), our Theorem 1 lends further credence to this conjecture. However
we suspect something stronger is true.

Conjecture 19. L-space knots are n–string prime for all integers n > 0.
That is, L-space knots have no essential tangle decomposition.

Since an essential tangle decomposition of a knot can give rise to a closed
essential surface in the knot’s exterior, one may be tempted to conjecture
that L-space knots have no closed essential surfaces in their exterior. Let
us note however, that there are hyperbolic L-space knots for which this
is not the case (indeed, ones with lens space surgeries, e.g. [Bak05]). For
non-hyperbolic examples, there are satellite L-space knots.

4.1. Satellite operations. Recall that for a satellite knot K, there is a
knotted solid torus V containing K such that there is no isotopy of K in V
to the core of V . The core of V is the companion of K, and the pair (V,K)
is the pattern of K. If K is braided in V , then we say K is a braided satellite
of the core of V .

Hayahsi-Matsuda-Ozawa show that if there is no essential tangle decom-
position of the pattern (V,K), then any essential tangle decomposition of
the satellite K gives rise to an essential tangle decomposition of the core
of V , [HMO99]. In particular, this gives the following result for braided
satellites.

Theorem 20 (Theorem 4.1[HMO99]). A braided satellite of a knot with no
essential tangle decomposition also has no essential tangle decomposition.

The Berge-Gabai knots are the knots in solid tori with non-trivial Dehn
surgeries yielding solid tori [Ber91, Gab89]. In particular, a satellite knot
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K with one of these as its pattern has a non-trivial Dehn surgery that is
equivalent to a Dehn surgery on its companion knot. Thus, when done
with the correct framings, the operation of taking Berge-Gabai satellites
(which includes cabling) preserves the property of being L-space knots. But
a sharper statement can be made.

Theorem 21 (Hom-Lidman-Vafaee [HLV14]). An L-space knot that is a
Berge-Gabai satellite must have an L-space knot as its companion.

Previously, Hedden [Hed09] and Hom [Hom11] determined how the prop-
erty of being an L-space knot behaves with respect to cabling. Together
Theorem 20 and Theorem 21 show that if a Berge-Gabai satellite knot is a
counterexample to Conjecture 19 then so is its companion.

Question 22. Let K be an L-space satellite knot.

• Is K a braided satellite?

• Is the companion knot to K also an L-space knot?

4.2. L-space knots of large tunnel number. Recall that the tunnel
number of a knot K is the minimum number of mutually disjoint, embedded
arcs intersecting K at their endpoints such that the exterior of the resulting
1–complex is a handlebody.

The L-space knots identified in Theorem 1 and all of the Berge knots [Ber90]
have tunnel number one, as do many other familiar L-space knots. Gordon-
Reid have shown that tunnel number one knots are n–string prime for all
integers n > 0 [GR95]. Thus L-space knots with tunnel number one support
Conjecture 19.

However there are L-space knots with greater tunnel number. Indeed, suf-
ficiently large cables of L-space knots are also L-space knots [Hed09], yet
tunnel number one cabled knots are only those which are certain cables of
torus knots [MS91]. More generally we show there are L-space knots of
arbitrarily large tunnel number.

Proposition 23. For any integer N , there is an L-space knot with tunnel
number greater than N .

Proof. Sufficiently large cables of positive L-space knots are also positive
L-space knots [Hed09]. Thus it is enough to show that, generically, the
tunnel number of an iterated cable of a torus knot (i.e. an iterated torus
knot) grows with the number of cabling iterations. Indeed, this follows from
Theorem 4.2 of [Zup13]. �

The L-space knots with tunnel number greater than one constructed in
Proposition 23 are all satellite knots. Furthermore, we have not identified
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a non-satellite L-space knot in the literature without tunnel number one,
though we expect there should be many. Is this the case?

Question 24. Is there a non-satellite L-space knot with tunnel number
greater than one?

After our initial preprint, Motegi showed us his construction of infinitely
many hyperbolic L-space knots with tunnel number 2 [Mot14]. In his arti-
cle, he further inquires about hyperbolic L-space knots with larger tunnel
number.

Along these lines, classifying L-space knots among tunnel number one knots
would be informative.

Question 25. Which tunnel number one knots are L-space knots?

Note that our general strategy in section 3.1 barely gets off the ground
since fiberedness among tunnel number one knots is not yet well under-
stood.

Question 26.

A. Which tunnel number one knots in S3 are fibered? [Joh07]

B. Which fibered tunnel number one knots in S3 support the tight con-
tact structure?
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