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K is a tame, oriented knot in S3.
Notice: KT ~ K.

D = is the crossing disk,
alg. #(DNK)=0

0D = C is the crossing
circle

A cosmetic crossing change preserves the isotopy type of K.
A crossing c is nugatory iff C bounds embedded disk in $3 — K.
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The Cosmetic (aka “Nugatory”) Crossing Conjecture

Conjecture (X. S. Lin)

If K admits a crossing change at ¢ which preserves the oriented
isotopy class of the knot, then c is nugatory.

Remark
This is Problem 1.58 on the “Kirby List.”
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The Cosmetic (aka “Nugatory”) Crossing Conjecture

Conjecture (X. S. Lin)

If K admits a crossing change at ¢ which preserves the oriented
isotopy class of the knot, then c is nugatory.

Remark
This is Problem 1.58 on the “Kirby List.”

Remark

Orientation and mirroring matter. Otherwise, consider
Kt = P(-3,-1,3). Then KT ~ —K~.
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What is known?

Families of knots known to satisfy the CCC:
m The unknot (Scharlemann and Thompson)
m 2-bridge knots (Torisu)
m Fibered knots (Kalfagianni)
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What is known?

Families of knots known to satisfy the CCC:
m The unknot (Scharlemann and Thompson)
m 2-bridge knots (Torisu)
m Fibered knots (Kalfagianni)
Other obstructions:
m If g(K) =1 and K admits a cosmetic crossing change, K is
algebraically slice. (BFKP)
® Winding number zero satellites of prime, non-cables with
pattern satisfy CCC also satisfy CCC. For example, Whitehead
doubles. (Balm-Kalfagianni)
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What about alternating knots?

Alternating knots admit alternating diagrams!
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What about alternating knots?

Alternating knots admit alternating diagrams!

Theorem (First Tait Conjecture¥)

Reduced alternating diagrams are minimal, and minimal diagrams
of prime, alternating knots are alternating.

*proved by Kauffman, Thisthlethwaite, Murasugi in the 80s

Thus if a cosmetic crossing exists, it must appear in a
non-alternating diagram.
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What can we utilize instead? Khovanov homology

s KA'(L) is reduced Khovanov homology of L C S3 over Z/2.
Delta-graded variant: WJ(L), §=j—1.

m L is called reduced Khovanov homology thin if WJ(L)
supported in one J-grading.
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What can we utilize instead? Khovanov homology

s KA'(L) is reduced Khovanov homology of L C S3 over Z/2.
Delta-graded variant: WJ(L), §=j—1.

m L is called reduced Khovanov homology thin if WJ(L)
supported in one J-grading.

Theorem (Lee, Manolescu-Ozsvéth)

Alternating and quasi-alternating knots are thin.

Theorem (Ozsvath and Szabd )
If K is Kh—thin then ¥(K) is an L-space.
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Y (K) is a rational homology sphere,

H(X(K),Z) = Z/ch & -~ & Z/ d. (1)
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Y (K) is a rational homology sphere,

H(X(K),Z) = Z/ch & -~ & Z/ d. (1)

Theorem (Lidman-M.)

Let K C S3 be a knot with ¥(K) an L-space. If each d; is
square-free, then K satisfies the cosmetic crossing conjecture.
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Applications of the theorem

Small knots: Every knot with at most 9 crossings (and most
with 10) satisfies the CCC.
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Applications of the theorem

Small knots: Every knot with at most 9 crossings (and most
with 10) satisfies the CCC.

Pretzel knots: For every square-free odd number n > 3,
there exists even p > 0 such that P(—p,p —1,n+ p — p?)
has determinant n and satisfies the CCC.
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Applications of the theorem

Small knots: Every knot with at most 9 crossings (and most
with 10) satisfies the CCC.

Pretzel knots: For every square-free odd number n > 3,
there exists even p > 0 such that P(—p,p —1,n+ p — p?)
has determinant n and satisfies the CCC.

Branched sets of L-space surgeries: For square-free p,
p>2g(K)—1, do p/q surgery on a strongly invertible
L-space knot K and take the branched set J, .
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Applications of the theorem

Small knots: Every knot with at most 9 crossings (and most
with 10) satisfies the CCC.

Pretzel knots: For every square-free odd number n > 3,
there exists even p > 0 such that P(—p,p —1,n+ p — p?)
has determinant n and satisfies the CCC.

Branched sets of L-space surgeries: For square-free p,
p>2g(K)—1, do p/q surgery on a strongly invertible
L-space knot K and take the branched set J, .

Symmetric unions: For example, K,,(52) when n =0
(mod 7). These have fixed determinant.
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Proof Sketch

Suppose K admits cosmetic crossing change at c.

R
of
o

~ is the crossing arc.
~ lifts to a knot 74 € L(K).
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Proof Sketch

Suppose K admits cosmetic crossing change at c.

R
of
o

~ is the crossing arc.
~ lifts to a knot 74 € L(K).

Suppose [] =0 in Hi(X(K)). Now we can invoke the Dehn
surgery characterization of the unknot
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Surgery characterization of the unknot

Let's suppose we know that [§] = 0 in H1(X(K)). We can then
apply:
Theorem (Gainullin; Kronheimer-Mrowka-Ozsvath-Szabd)

Let K be a null-homologous knot in an L-space Y. If
Yo/q(K) = Yy q(U) then K >~ U.
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How is this applied?

Let M = X(K) — N(%), and consider two filling slopes, o and S,
where

M(a) = £(K*)
M(B) =X(K™)
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How is this applied?

Let M = X(K) — N(%), and consider two filling slopes, o and S,

where
M(a) = Z(KT)
M(B) =X (K™)
Then, the Montesinos trick implies
m Ao, B) =2.

m —1/2-surgery on §: L(K™) ~ £(K™)
—1/2-surgery on U: L(KT) ~ L(KT)
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How is this applied?

Let M = X(K) — N(%), and consider two filling slopes, o and S,
where
M(ar) = X(K™)
M(p) = 2(K™)
Then, the Montesinos trick implies
m Ao, B) =2.
m —1/2-surgery on §: L(K™) ~ £(K™)
—1/2-surgery on U: L(KT) ~ L(KT)
Thus by the surgery characterization of the unknot, 4 ~ U.

Allison Moore Cosmetic surgery in L-spaces and nugatory crossings



How is this applied?

Let M = X(K) — N(%), and consider two filling slopes, o and S,

where
M(a) = Z(KT)
M(B) =X (K™)
Then, the Montesinos trick implies
m Ao, B) =2.

m —1/2-surgery on §: L(K™) ~ £(K™)
—1/2-surgery on U: L(KT) ~ L(KT)
Thus by the surgery characterization of the unknot, 4 ~ U.
Lemma J

4 is an unknot in ¥(K) implies the crossing c is nugatory.

(This follows as a special case of the Zy-equivariant Dehn's Lemma of
Kim-Tollefson, Gordon-Litherland and Meeks-Yau.)
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So why is the lift null-homologous?

Proposition
[5] = 0 in Hy(X(K)). J

Take (i, Apm) as a basis for H1(OM), where Ay is the rational
longitude and p- Ay =1
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So why is the lift null-homologous?

Proposition
[5] = 0 in Hy(X(K)). J

Take (i, Apm) as a basis for H1(OM), where Ay is the rational
longitude and p- Ay =1

The rational longitude is the unique slope such that

‘I'*()\M)| < o0 in Hl(M) =7Z®H.
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So why is the lift null-homologous?

Proposition
[5] = 0 in Hy(X(K)). J

Take (i, Apm) as a basis for H1(OM), where Ay is the rational
longitude and p- Ay =1

The rational longitude is the unique slope such that
‘I'*()\M)| < o0 in Hl(M) =7Z®H.
In this basis:

a=pu+qim
B=ru+siy
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An observation of Watson's is that Ay, controls the order of the
first homology of a Dehn filling. In particular:

|Hi(M(a))| = emA(a; Am)

|Hi(M(B))] = cmA(B, Am)
Thus p=r.
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An observation of Watson's is that Ay, controls the order of the
first homology of a Dehn filling. In particular:

|Hi(M(a))| = emA(a; Am)

|Hi(M(B))] = cmA(B, Am)
Thus p=r.

And the Montesinos trick (again) tells us

A, B) =2=p(q—s)

which implies p=1or p = 2.
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An observation of Watson's is that Ay, controls the order of the
first homology of a Dehn filling. In particular:

|Hi(M(a))| = emA(a; Am)
[Hi(M(B))] = cmA(B, Am)
Thus p=r.
And the Montesinos trick (again) tells us
A, B) =2=p(q—>s)
which implies p=1or p = 2.
Since p # 2, we have p=1. Thus

|H1(Z(K))‘ =Cm = ordH I*(Am) . ‘H’
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A special case of our theorem:

As a special case, consider when det(K) is square-free.
(i.e. all of the d; in decomposition are primes, rather than
square-free).

det(K) = |Hi(X(K))| = ordy ix(Am) - |H|
But i.(Ay) generates a subgroup of H, thus
ordH i*()\/\/]) =1

and so Ay is integrally null-homologous. Finally, use fact that
A(a, Ay) =1 to conclude that [§] = 0 in Hi(X(K)). O
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A special case of our theorem:

As a special case, consider when det(K) is square-free.
(i.e. all of the d; in decomposition are primes, rather than
square-free).

det(K) = |Hi(X(K))| = ordy ix(Am) - |H|
But i.(Ay) generates a subgroup of H, thus
ordH i*()\/\/]) =1

and so Ay is integrally null-homologous. Finally, use fact that
A(a, Ay) =1 to conclude that [§] = 0 in Hi(X(K)). O

The general argument uses some linear algebra to argue that
ordy ix(Ap) = 1 and reaches the same conclusion.
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Remarks

We can also use similar techniques to recover that L-space
knots satisfy the CCC (previously known because L-space
knots are fibered).
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Remarks

We can also use similar techniques to recover that L-space
knots satisfy the CCC (previously known because L-space
knots are fibered).

Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with ¥(K) an
L-space. If each d; is square-free, then K satisfies the cosmetic
crossing conjecture.

Allison Moore Cosmetic surgery in L-spaces and nugatory crossings



Remarks

We can also use similar techniques to recover that L-space
knots satisfy the CCC (previously known because L-space
knots are fibered).

Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with ¥(K) an
L-space. If each d; is square-free, then K satisfies the cosmetic
crossing conjecture.

... but certain conjectures conspire to limit it to S3 and
connected sums of the Poincaré sphere
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Remarks

We can also use similar techniques to recover that L-space
knots satisfy the CCC (previously known because L-space
knots are fibered).

Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with ¥(K) an
L-space. If each d; is square-free, then K satisfies the cosmetic
crossing conjecture.

... but certain conjectures conspire to limit it to S3 and
connected sums of the Poincaré sphere

The Cosmetic Crossing Conjecture is still open!
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Thank you!
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