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K is a tame, oriented knot in S3.
Notice: K+ ' K−.

D = is the crossing disk,
alg. #(D ∩ K ) = 0

∂D = C is the crossing
circle

A cosmetic crossing change preserves the isotopy type of K .
A crossing c is nugatory iff C bounds embedded disk in S3 − K .
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The Cosmetic (aka “Nugatory”) Crossing Conjecture

Conjecture (X. S. Lin)

If K admits a crossing change at c which preserves the oriented
isotopy class of the knot, then c is nugatory.

Remark

This is Problem 1.58 on the “Kirby List.”

Remark

Orientation and mirroring matter. Otherwise, consider
K+ = P(−3,−1, 3). Then K+ ' −K−.
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What is known?

Families of knots known to satisfy the CCC:

The unknot (Scharlemann and Thompson)

2-bridge knots (Torisu)

Fibered knots (Kalfagianni)

Other obstructions:

If g(K ) = 1 and K admits a cosmetic crossing change, K is
algebraically slice. (BFKP)

Winding number zero satellites of prime, non-cables with
pattern satisfy CCC also satisfy CCC. For example, Whitehead
doubles. (Balm-Kalfagianni)
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What about alternating knots?

Alternating knots admit alternating diagrams!

Theorem (First Tait Conjecture*)

Reduced alternating diagrams are minimal, and minimal diagrams
of prime, alternating knots are alternating.

*proved by Kauffman, Thisthlethwaite, Murasugi in the 80s

Thus if a cosmetic crossing exists, it must appear in a
non-alternating diagram.
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What can we utilize instead? Khovanov homology

Kh
i ,j

(L) is reduced Khovanov homology of L ⊂ S3 over Z/2.

Delta-graded variant: Kh
δ
(L), δ = j − i .

L is called reduced Khovanov homology thin if Kh
δ
(L)

supported in one δ-grading.

Theorem (Lee, Manolescu-Ozsváth)

Alternating and quasi-alternating knots are thin.

Theorem (Ozsváth and Szabó )

If K is Kh–thin then Σ(K ) is an L-space.
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Σ(K ) is a rational homology sphere,

H1(Σ(K );Z) ∼= Z/d1 ⊕ · · · ⊕ Z/dk . (1)

Theorem (Lidman-M.)

Let K ⊂ S3 be a knot with Σ(K ) an L-space. If each di is
square-free, then K satisfies the cosmetic crossing conjecture.
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Applications of the theorem

1 Small knots: Every knot with at most 9 crossings (and most
with 10) satisfies the CCC.

2 Pretzel knots: For every square-free odd number n ≥ 3,
there exists even p > 0 such that P(−p, p − 1, n + p − p2)
has determinant n and satisfies the CCC.

3 Branched sets of L-space surgeries: For square-free p,
p ≥ 2g(K )− 1, do p/q surgery on a strongly invertible
L-space knot K and take the branched set Jp/q.

4 Symmetric unions: For example, Kn(52) when n ∼= 0
(mod 7). These have fixed determinant.
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Proof Sketch

Suppose K admits cosmetic crossing change at c .

γ is the crossing arc.
γ lifts to a knot γ̃ ∈ Σ(K ).

Suppose [γ̃] = 0 in H1(Σ(K )). Now we can invoke the Dehn
surgery characterization of the unknot
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Surgery characterization of the unknot

Let’s suppose we know that [γ̃] = 0 in H1(Σ(K )). We can then
apply:

Theorem (Gainullin; Kronheimer-Mrowka-Ozsváth-Szabó)

Let K be a null-homologous knot in an L-space Y . If
Yp/q(K ) ∼= Yp/q(U) then K ' U.
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How is this applied?

Let M = Σ(K )− N(γ̃), and consider two filling slopes, α and β,
where

M(α) = Σ(K+)

M(β) = Σ(K−)

Then, the Montesinos trick implies

∆(α, β) = 2.

−1/2–surgery on γ̃: Σ(K+) Σ(K−)
−1/2–surgery on U: Σ(K+) Σ(K+)

Thus by the surgery characterization of the unknot, γ̃ ' U.

Lemma

γ̃ is an unknot in Σ(K ) implies the crossing c is nugatory.

(This follows as a special case of the Z2-equivariant Dehn’s Lemma of

Kim-Tollefson, Gordon-Litherland and Meeks-Yau.)
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So why is the lift null-homologous?

Proposition

[γ̃] = 0 in H1(Σ(K )).

Take (µ, λM) as a basis for H1(∂M), where λM is the rational
longitude and µ · λM = 1

The rational longitude is the unique slope such that

|i∗(λM)| <∞ in H1(M) = Z⊕ H.

In this basis:

α = pµ+ qλM

β = rµ+ sλM
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An observation of Watson’s is that λM controls the order of the
first homology of a Dehn filling. In particular:

|H1(M(α))| = cM∆(α, λM)

|H1(M(β))| = cM∆(β, λM)

Thus p = r .

And the Montesinos trick (again) tells us

∆(α, β) = 2 = p(q − s)

which implies p = 1 or p = 2.

Since p 6= 2, we have p = 1. Thus

|H1(Σ(K ))| = cM = ordH i∗(λM) · |H|
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A special case of our theorem:

As a special case, consider when det(K ) is square-free.
(i.e. all of the di in decomposition are primes, rather than
square-free).

det(K ) = |H1(Σ(K ))| = ordH i∗(λM) · |H|

But i∗(λM) generates a subgroup of H, thus

ordH i∗(λM) = 1

and so λM is integrally null-homologous. Finally, use fact that
∆(α, λM) = 1 to conclude that [γ̃] = 0 in H1(Σ(K )).

The general argument uses some linear algebra to argue that
ordH i∗(λM) = 1 and reaches the same conclusion.
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Remarks

1 We can also use similar techniques to recover that L-space
knots satisfy the CCC (previously known because L-space
knots are fibered).

2 Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with Σ(K ) an
L-space. If each di is square-free, then K satisfies the cosmetic
crossing conjecture.

... but certain conjectures conspire to limit it to S3 and
connected sums of the Poincaré sphere

3 The Cosmetic Crossing Conjecture is still open!
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Thank you!
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