Cosmetic surgery in L-spaces and nugatory crossings

Tye Lidman ‡ Allison Moore†

†Rice University

‡University of Texas

June 26, 2015

K is a tame, oriented knot in S^3 . Notice: $K^+ \simeq K^-$.

 $D =$ is the crossing disk, alg. $\#(D \cap K) = 0$

 $\partial D = C$ is the crossing circle

A cosmetic crossing change preserves the isotopy type of K. A crossing c is nugatory iff C bounds embedded disk in $S^3 - K$.

Conjecture (X. S. Lin)

If K admits a crossing change at c which preserves the oriented isotopy class of the knot, then c is nugatory.

Remark

This is Problem 1.58 on the "Kirby List."

Conjecture (X. S. Lin)

If K admits a crossing change at c which preserves the oriented isotopy class of the knot, then c is nugatory.

Remark

This is Problem 1.58 on the "Kirby List."

Remark

Orientation and mirroring matter. Otherwise, consider $K^+ = P(-3, -1, 3)$. Then $K^+ \simeq -K^-$.

Families of knots known to satisfy the CCC:

- The unknot (Scharlemann and Thompson)
- 2-bridge knots (Torisu)
- Fibered knots (Kalfagianni)

Families of knots known to satisfy the CCC:

- The unknot (Scharlemann and Thompson)
- 2-bridge knots (Torisu)
- Fibered knots (Kalfagianni)

Other obstructions:

- If $g(K) = 1$ and K admits a cosmetic crossing change, K is algebraically slice. (BFKP)
- Winding number zero satellites of prime, non-cables with pattern satisfy CCC also satisfy CCC. For example, Whitehead doubles. (Balm-Kalfagianni)

Alternating knots admit alternating diagrams!

Alternating knots admit alternating diagrams!

Theorem (First Tait Conjecture*)

Reduced alternating diagrams are minimal, and minimal diagrams of prime, alternating knots are alternating.

*proved by Kauffman, Thisthlethwaite, Murasugi in the 80s

Thus if a cosmetic crossing exists, it must appear in a non-alternating diagram.

What can we utilize instead? Khovanov homology

- $\overline{\mathsf{Kh}}^{i,j}(L)$ is reduced Khovanov homology of $L\subset \mathcal{S}^3$ over $\mathbb{Z}/2.$ Delta-graded variant: $\overline{\mathit{Kh}}^{\delta}(L)$, $\delta = j - i$.
- L is called reduced Khovanov homology thin if $\overline{\mathsf{Kh}}^{\delta}(L)$ supported in one δ -grading.

What can we utilize instead? Khovanov homology

 $\overline{\mathsf{Kh}}^{i,j}(L)$ is reduced Khovanov homology of $L\subset \mathcal{S}^3$ over $\mathbb{Z}/2.$ Delta-graded variant: $\overline{\mathit{Kh}}^{\delta}(L)$, $\delta = j - i$.

L is called reduced Khovanov homology thin if $\overline{\mathsf{Kh}}^{\delta}(L)$ supported in one δ -grading.

Theorem (Lee, Manolescu-Ozsváth)

Alternating and quasi-alternating knots are thin.

Theorem (Ozsváth and Szabó)

If K is \overline{Kh} -thin then $\Sigma(K)$ is an L-space.

 $\Sigma(K)$ is a rational homology sphere,

$$
H_1(\Sigma(K);\mathbb{Z})\cong \mathbb{Z}/d_1\oplus\cdots\oplus\mathbb{Z}/d_k. \hspace{1cm} (1)
$$

 $\Sigma(K)$ is a rational homology sphere,

$$
H_1(\Sigma(K);\mathbb{Z})\cong \mathbb{Z}/d_1\oplus\cdots\oplus\mathbb{Z}/d_k. \hspace{1cm} (1)
$$

Theorem (Lidman-M.)

Let $K\subset S^3$ be a knot with $\Sigma(K)$ an L-space. If each d_i is square-free, then K satisfies the cosmetic crossing conjecture. **1 Small knots:** Every knot with at most 9 crossings (and most with 10) satisfies the CCC.

- **1 Small knots:** Every knot with at most 9 crossings (and most with 10) satisfies the CCC.
- **2 Pretzel knots:** For every square-free odd number $n \geq 3$, there exists even $p>0$ such that $P(-p, p-1, n+p-p^2)$ has determinant *n* and satisfies the CCC.
- **1 Small knots:** Every knot with at most 9 crossings (and most with 10) satisfies the CCC.
- **2 Pretzel knots:** For every square-free odd number $n \geq 3$, there exists even $p>0$ such that $P(-p, p-1, n+p-p^2)$ has determinant *n* and satisfies the CCC.
- **3** Branched sets of L-space surgeries: For square-free p , $p \geq 2g(K) - 1$, do p/q surgery on a strongly invertible L-space knot K and take the branched set $J_{\rho/q}.$
- **1 Small knots:** Every knot with at most 9 crossings (and most with 10) satisfies the CCC.
- **2 Pretzel knots:** For every square-free odd number $n \geq 3$, there exists even $p>0$ such that $P(-p, p-1, n+p-p^2)$ has determinant *n* and satisfies the CCC.
- **3** Branched sets of L-space surgeries: For square-free p , $p \geq 2g(K) - 1$, do p/q surgery on a strongly invertible L-space knot K and take the branched set $J_{\rho/q}.$
- 4 Symmetric unions: For example, $K_n(5_2)$ when $n \approx 0$ (mod 7). These have fixed determinant.

Suppose K admits cosmetic crossing change at c .

 γ is the crossing arc. γ lifts to a knot $\tilde{\gamma} \in \Sigma(K)$. Suppose K admits cosmetic crossing change at c .

Suppose $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$. Now we can invoke the Dehn surgery characterization of the unknot

Let's suppose we know that $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$. We can then apply:

Theorem (Gainullin; Kronheimer-Mrowka-Ozsváth-Szabó) Let K be a null-homologous knot in an L-space Y . If $Y_{p/q}(K) \cong Y_{p/q}(U)$ then $K \simeq U$.

How is this applied?

Let $M = \Sigma(K) - N(\tilde{\gamma})$, and consider two filling slopes, α and β , where

$$
M(\alpha) = \Sigma(K^+)
$$

$$
M(\beta) = \Sigma(K^-)
$$

Let $M = \Sigma(K) - N(\tilde{\gamma})$, and consider two filling slopes, α and β , where

$$
M(\alpha) = \Sigma(K^+)
$$

$$
M(\beta) = \Sigma(K^-)
$$

Then, the Montesinos trick implies

\n- □(α, β) = 2.
\n- □ -1/2–surgery on
$$
\tilde{\gamma}
$$
: $\Sigma(K^+) \rightsquigarrow \Sigma(K^-)$ $-1/2$ –surgery on *U*: $\Sigma(K^+) \rightsquigarrow \Sigma(K^+)$
\n

Let $M = \Sigma(K) - N(\tilde{\gamma})$, and consider two filling slopes, α and β , where

$$
M(\alpha) = \Sigma(K^+)
$$

$$
M(\beta) = \Sigma(K^-)
$$

Then, the Montesinos trick implies

$$
\Delta(\alpha, \beta) = 2.
$$

\n■ -1/2–surgery on $\tilde{\gamma}$: $\Sigma(K^+) \rightsquigarrow \Sigma(K^-)$
\n-1/2–surgery on *U*: $\Sigma(K^+) \rightsquigarrow \Sigma(K^+)$

Thus by the surgery characterization of the unknot, $\tilde{\gamma} \simeq U$.

Let $M = \Sigma(K) - N(\tilde{\gamma})$, and consider two filling slopes, α and β , where

$$
M(\alpha) = \Sigma(K^+)
$$

$$
M(\beta) = \Sigma(K^-)
$$

Then, the Montesinos trick implies

\n- □(α, β) = 2.
\n- □ −1/2–surgery on
$$
\tilde{\gamma}
$$
: $\Sigma(K^+) \rightsquigarrow \Sigma(K^-)$ $-1/2$ –surgery on *U*: $\Sigma(K^+) \rightsquigarrow \Sigma(K^+)$
\n

Thus by the surgery characterization of the unknot, $\tilde{\gamma} \simeq U$.

Lemma

 $\tilde{\gamma}$ is an unknot in $\Sigma(K)$ implies the crossing c is nugatory.

(This follows as a special case of the \mathbb{Z}_2 -equivariant Dehn's Lemma of Kim-Tollefson, Gordon-Litherland and Meeks-Yau.)

Proposition

 $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$.

Take (μ, λ_M) as a basis for $H_1(\partial M)$, where λ_M is the rational longitude and $\mu \cdot \lambda_M = 1$

Proposition

 $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$.

Take (μ, λ_M) as a basis for $H_1(\partial M)$, where λ_M is the rational longitude and $\mu \cdot \lambda_M = 1$

The rational longitude is the unique slope such that

 $|i_*(\lambda_M)| < \infty$ in $H_1(M) = \mathbb{Z} \oplus H$.

Proposition

 $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$.

Take (μ, λ_M) as a basis for $H_1(\partial M)$, where λ_M is the rational longitude and $\mu \cdot \lambda_M = 1$

The rational longitude is the unique slope such that

$$
|i_{*}(\lambda_{M})| < \infty \text{ in } H_{1}(M) = \mathbb{Z} \oplus H.
$$

In this basis:

$$
\alpha = p\mu + q\lambda_M
$$

$$
\beta = r\mu + s\lambda_M
$$

An observation of Watson's is that λ_M controls the order of the first homology of a Dehn filling. In particular:

$$
|H_1(M(\alpha))| = c_M \Delta(\alpha, \lambda_M)
$$

$$
|H_1(M(\beta))| = c_M \Delta(\beta, \lambda_M)
$$

Thus $p = r$.

An observation of Watson's is that λ_M controls the order of the first homology of a Dehn filling. In particular:

$$
|H_1(M(\alpha))| = c_M \Delta(\alpha, \lambda_M)
$$

$$
|H_1(M(\beta))| = c_M \Delta(\beta, \lambda_M)
$$

Thus $p = r$.

And the Montesinos trick (again) tells us

$$
\Delta(\alpha,\beta)=2=p(q-s)
$$

which implies $p = 1$ or $p = 2$.

An observation of Watson's is that λ_M controls the order of the first homology of a Dehn filling. In particular:

$$
|H_1(M(\alpha))| = c_M \Delta(\alpha, \lambda_M)
$$

$$
|H_1(M(\beta))| = c_M \Delta(\beta, \lambda_M)
$$

Thus $p = r$.

And the Montesinos trick (again) tells us

$$
\Delta(\alpha,\beta)=2=p(q-s)
$$

which implies $p = 1$ or $p = 2$.

Since $p \neq 2$, we have $p = 1$. Thus

$$
|H_1(\Sigma(K))|=c_M=\mathsf{ord}_H\,i_*(\lambda_M)\cdot |H|
$$

As a special case, consider when $det(K)$ is square-free. (i.e. all of the d_i in decomposition are primes, rather than square-free).

$$
\mathsf{det}(\mathsf{K})=|\mathsf{H}_{1}(\mathsf{\Sigma}(\mathsf{K}))|=\mathsf{ord}_{H} \, i_{*}(\lambda_{M})\cdot|H|
$$

But $i_*(\lambda_M)$ generates a subgroup of H, thus

$$
\mathsf{ord}_H\,i_*(\lambda_M)=1
$$

and so λ_M is integrally null-homologous. Finally, use fact that $\Delta(\alpha, \lambda_M) = 1$ to conclude that $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$.

As a special case, consider when $det(K)$ is square-free. (i.e. all of the d_i in decomposition are primes, rather than square-free).

$$
\mathsf{det}(\mathsf{K})=|\mathsf{H}_{1}(\mathsf{\Sigma}(\mathsf{K}))|=\mathsf{ord}_{H} \, i_{*}(\lambda_{M})\cdot|H|
$$

But $i_*(\lambda_M)$ generates a subgroup of H, thus

ord_H $i_*(\lambda_M) = 1$

and so λ_M is integrally null-homologous. Finally, use fact that $\Delta(\alpha, \lambda_M) = 1$ to conclude that $[\tilde{\gamma}] = 0$ in $H_1(\Sigma(K))$.

The general argument uses some linear algebra to argue that ord_H $i_*(\lambda_M) = 1$ and reaches the same conclusion.

Remarks

¹ We can also use similar techniques to recover that L-space knots satisfy the CCC (previously known because L-space knots are fibered).

Remarks

- **1** We can also use similar techniques to recover that L-space knots satisfy the CCC (previously known because L-space knots are fibered).
- 2 Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with $\Sigma(K)$ an L-space. If each d_i is square-free, then K satisfies the cosmetic crossing conjecture.

Remarks

- **1** We can also use similar techniques to recover that L-space knots satisfy the CCC (previously known because L-space knots are fibered).
- 2 Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with $\Sigma(K)$ an L-space. If each d_i is square-free, then K satisfies the cosmetic crossing conjecture.

... but certain conjectures conspire to limit it to S^3 and connected sums of the Poincaré sphere

- **1** We can also use similar techniques to recover that L-space knots satisfy the CCC (previously known because L-space knots are fibered).
- 2 Our theorem holds in greater generality....

Theorem (Lidman-M.)

Let K be a knot in any integer homology sphere with $\Sigma(K)$ an L-space. If each d_i is square-free, then K satisfies the cosmetic crossing conjecture.

... but certain conjectures conspire to limit it to S^3 and connected sums of the Poincaré sphere

3 The Cosmetic Crossing Conjecture is still open!

Thank you!

Allison Moore **[Cosmetic surgery in L-spaces and nugatory crossings](#page-0-0)**