

Montesinos knots, Hopf plumbings and L-space surgeries

Kenneth Baker ‡ – Allison Moore †

[†]Rice University

[‡]University of Miami

March 29, 2014

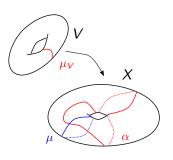
A longstanding question: Which knots admit lens space surgeries?

$$K \subset S^3$$
, $S^3_{p/q}(K)$ is (p,q) -Dehn
surgery along K .

Recall:

$$H_1(S^3_{p/q}(K);\mathbb{Z})\cong \mathbb{Z}/p\mathbb{Z}\cong H_1(L(p,q);\mathbb{Z})$$

So H_1 doesn't help answer this question at all.



 $\alpha = p\mu + q\lambda$

Which knots admit lens space surgeries?

- 1971 (Moser) torus knots.
- 1977 (Bailey-Rolfsen) iterated torus knot.
- 1980 (Fintushel-Stern) hyperbolic knot (-2, 3, 7).
- 1990 (Berge) many examples.

Cyclic Surgery Theorem (CGLS) + Berge's construction = 'The Berge Conjecture.'

(Ozsváth-Szabó, Rasmussen):

Κ

(Ozsváth-Szabó, Rasmussen):

$$K \subset Y \longrightarrow \cdots \subset \mathcal{F}_{i-1}C \subset \mathcal{F}_iC \subset \cdots$$

$$\downarrow \\ H_*(\mathcal{F}_iC/\mathcal{F}_{i-1}C) \\ \parallel \\ \widehat{\mathsf{HFK}}(K) = \bigoplus_{m,s} \widehat{\mathsf{HFK}}_m(S^3, K, s).$$

Facts:

•
$$\Delta_{\mathcal{K}}(t) = \sum_{s} \chi(\widehat{\operatorname{HFK}}(\mathcal{K}, s)) \cdot t^{s}$$

• rank $\widehat{HF}(L(p, q)) = p = |H_1(L(p, q))|$
A $\mathbb{Q}HS^3$ Y is an **L-space** if $|H_1(Y; \mathbb{Z})| = \operatorname{rank} \widehat{HF}(Y)$.
Ex: S^3 , all lens spaces, 3-manifolds with finite π_1 .

Motivating question recast

Question Which knots admit lens space surgeries?

becomes

Question

Which knots admit L-space surgeries?

L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$, $\widehat{HFK}(K,s) \cong \mathbb{F}$ or 0 (and some other conditions on Maslov grading).

L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$, $\widehat{HFK}(K,s) \cong \mathbb{F}$ or 0 (and some other conditions on Maslov grading).

Corollary (Determinant-genus inequality) If det(K) > 2g(K) + 1, then K is not an L-space knot.

L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$, $\widehat{HFK}(K,s) \cong \mathbb{F}$ or 0 (and some other conditions on Maslov grading).

Corollary (Determinant-genus inequality)

If det(K) > 2g(K) + 1, then K is not an L-space knot.

Proof.

If K is an L-space knot, then $|a_s| \leq 1$ \forall coefficients a_s of $\Delta_K(t)$. Then,

$$\det(\mathcal{K}) = |\Delta_{\mathcal{K}}(-1)| \leq \sum_{s} |a_{s}| \leq 2g(\mathcal{K}) + 1.$$

More obstructions

Theorem (Ni, Ghiggini)

K is fibered if and only if $\widehat{HFK}(K, g(K)) \cong \mathbb{F}$.

Thus L-space knots are fibered.

More obstructions

Theorem (Ni, Ghiggini)

K is fibered if and only if $\widehat{HFK}(K, g(K)) \cong \mathbb{F}$.

Thus L-space knots are fibered.

Theorem (Hedden)

An L-space knot K supports the tight contact structure; equivalently, an L-space knot is strongly quasipositive.

Classification theorem

Theorem (Baker-M.)

Among the Montesinos knots, the only L-space knots are the pretzel knots P(-2, 3, 2n + 1) for $n \ge 0$ and the torus knots T(2, 2n + 1) for $n \ge 0$.

A Question	Obstructions	Montesinos knots	Pretzel knots	More Questions
Montesir	nos knots			

$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \,|\, e\right)$$

Figure: $M(\frac{3}{4}, -\frac{2}{5}, \frac{1}{3}|3)$.

Where $\alpha_i, \beta_i, e \in \mathbb{Z}$ and $\alpha_i > 1$, $|\beta_i| < \alpha_i$, and $gcd(\alpha_i, \beta_i) = 1$.

We need only consider fibered, non-alternating Montesinos knots,

$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$$

and we assume $r \ge 3$, because $r \le 2$ implies K is a two-bridge link.

Theorem (Ozsváth-Szabó)

An alternating knot admits an L-space surgery if and only if $K \simeq T(2, 2n + 1)$, some $n \in \mathbb{Z}$.

Obstructions

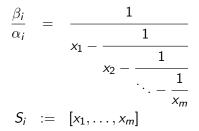
Montesinos knots

Pretzel knots

More Questions

Fibered Montesinos knots

(Hirasawa-Murasugi): Classified fibered Montesinos knots with their fibers. For $K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$,



Two cases:

- **1** α_i are all odd \rightsquigarrow strict continued fractions.
- **2** α_1 is even, α_i is odd for $i > 1 \rightsquigarrow$ even continued fractions.

Open books for three-manifolds

(Y, F) —an open book for closed 3-manifold Y; $L = \partial F$. $\xi = \ker \alpha$, $\alpha \wedge d\alpha \neq 0$ —a contact structure on Y.

Open books for three-manifolds

- (Y, F) —an open book for closed 3-manifold Y; $L = \partial F$. $\xi = \ker \alpha$, $\alpha \wedge d\alpha \neq 0$ —a contact structure on Y.
 - (Thurston-Winkelnkemper 1975)
 Every (Y, F) induces a contact structure.
 - (Giroux 2002) $\{\xi \text{ on } Y\}/ \text{ isotopy } \longleftrightarrow \{(Y, F)\}/ \text{ positive stabilization}$

Plumbings of Hopf bands

Pos/neg (de)stabilization \leftrightarrow (de)plumbing of pos/neg Hopf bands.

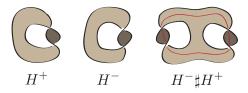


Figure: The connected sum of positive and negative Hopf bands, which admits a Stallings twist along the red curve.

A Question	Obstructions	Montesinos knots	Pretzel knots	More Questions

Lemma (Contact Structures Lemma)

 (Giroux) If F contains a positive Hopf band, then (Y, F) supports the same contact structure as the open book obtained by deplumbing that positive Hopf band.

A Question	Obstructions	Montesinos knots	Pretzel knots	More Questions

Lemma (Contact Structures Lemma)

- (Giroux) If F contains a positive Hopf band, then (Y, F) supports the same contact structure as the open book obtained by deplumbing that positive Hopf band.
- 2 If F contains a negative Hopf band, then (Y, F) supports an overtwisted contact structure.

A Question	Obstructions	Montesinos knots	Pretzel knots	More Questions

Lemma (Contact Structures Lemma)

- (Giroux) If F contains a positive Hopf band, then (Y, F) supports the same contact structure as the open book obtained by deplumbing that positive Hopf band.
- 2 If F contains a negative Hopf band, then (Y, F) supports an overtwisted contact structure.
- 3 (Yamamoto) If (Y, F) admits a Stallings twist, then (Y, F) supports an overtwisted contact structure.

Theorem (Baker-M.)

A fibered Montesinos knot that supports the tight contact structure is isotopic to either

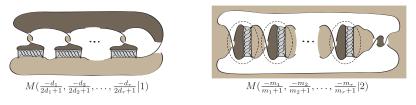


Figure: Left: odd type. Right: even type.

and its fiber is obtained from the disk by a sequence of Hopf plumbings.

$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$$

Each α_i/β_i has a strict continued fraction:

$$S_i = [2a_1^{(i)}, b_1^{(i)}, \dots, 2a_{q_i}^{(i)}, b_{q_i}^{(i)}]$$

Hirasawa-Mursagi \Rightarrow strong restrictions on *e*, S_i , for all *i*.

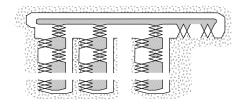


Figure: This image borrowed from Hirasawa-Murasugi.

- Repeatedly apply the Contact Structures Lemma, parts 2 & 3 to identify negative Hopf bands and/or Stallings twists.
- Cull these knots because they support an overtwisted contact structure.

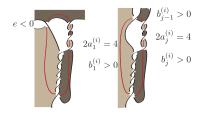
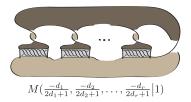


Figure: Finding negative Hopf bands in *F*.

Odd case

- Odd fibered Montesinos knots without a H⁻ remain.
- Successively deplumb H⁺ until a single H⁺ remains.
- These knots support the tight contact structure.



Determinant-genus inequality

Lemma

Let K be an odd fibered Montesinos knot supporting the tight contact structure. Then det(K) > 2g(K) + 1 unless $K = M(\frac{1}{3}, \frac{1}{3}, \frac{2}{5}|1).$

For any
$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$$
,
$$\det(K) = |H_1(\Sigma_2(S^3, K); \mathbb{Z})| = \left|\prod_{i=1}^r \alpha_i \left(e + \sum_{i=1}^r \frac{\beta_i}{\alpha_i}\right)\right|.$$

A Question	Obstructions	Montesinos knots	Pretzel knots	More Questions

For odd, fibered Montesinos knots,

$$g(\mathcal{K}) = rac{1}{2}\left(\sum_{i=1}^r b^{(i)} + |e| - 1
ight)$$

We verify det(K) > 2g(K) + 1 for such knots.

A Question	Obstructions	Montesinos knots	Pretzel knots	More Questions

For odd, fibered Montesinos knots,

$$g(K) = rac{1}{2}\left(\sum_{i=1}^r b^{(i)} + |e| - 1
ight)$$

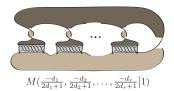
We verify det(K) > 2g(K) + 1 for such knots.

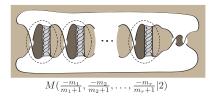
Finally, $K = M(\frac{1}{3}, \frac{1}{3}, \frac{2}{5}|1)$ is the knot 10_{145} . Since

$$\Delta_{10_{145}(t)} = t^2 + t - 3 + t^{-1} + t^{-2},$$

no odd fibered Montesinos knot admits an L-space surgery.

Following similar techniques, pare down to the subfamily of fibered, even Montesinos knots which support the tight contact structure:





Lemma

 $M(\frac{-m_1}{m_1+1},\ldots,\frac{-m_r}{m_r+1}|2)$ are isotopic to pretzel links.

Theorem (Lidman-M.)

Let K be a pretzel knot with any number of tangles. Then K admits an L-space surgery if and only if

1
$$K \simeq T(2, 2n+1), n \ge 0,$$
 or

2
$$K \simeq \pm (-2, 3, 2n+1), n \ge 0.$$

Theorem (Lidman-M.)

Let K be a pretzel knot with any number of tangles. Then K admits an L-space surgery if and only if

1
$$K \simeq T(2, 2n+1), \ n \ge 0, \ or$$

2
$$K \simeq \pm (-2, 3, 2n+1), n \ge 0.$$

Remark

These two families were previously known to admit L-space surgeries

It remains to show no other pretzel knot qualifies.

Pretzel knots

(Gabai 1980s): Classification of fibered pretzel links.

Two techniques to obstruct K from admitting an L-space surgery.

- determinant-genus inequality
- $\Delta_{\kappa}(t)$ obstructions using the Kauffman state sum:

$$\Delta_{\mathcal{K}}(T) = \sum_{\mathbf{x} \in \mathcal{S}} (-1)^{M(\mathbf{x})} T^{A(\mathbf{x})}$$

inos knots

Pretzel knots

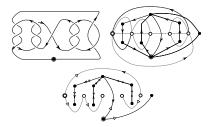
(Gabai 1980s): Classification of fibered pretzel links.

Two techniques to obstruct K from admitting an L-space surgery.

- determinant-genus inequality
- $\Delta_{\mathcal{K}}(t)$ obstructions using the Kauffman state sum:

$$\Delta_{\mathcal{K}}(T) = \sum_{\mathbf{x} \in \mathcal{S}} (-1)^{M(\mathbf{x})} T^{A(\mathbf{x})}$$

Kauffman state sum computations make use of the existence of essential Conway spheres in the complements of large pretzel knots.



Essential *n*-string tangle decompositions

Definition

 $K \subset S^3$ has an essential *n*-string tangle decomposition if \exists embedded sphere Q such that $Q \pitchfork K = \{2n \text{ pts}\}$ and where $Q - \partial \mathcal{N}(K)$ is essential in $S^3 - \mathcal{N}(K)$.

Theorem (Krcatovich)

L-space knots are 1-string prime.

Conjecture (Lidman-M.)

L-space knots are 2-string prime.

More Questions

Question

Can an lens space knot have an essential Conway sphere?

Partial answer: Amongst arborescent knots, **no** (Wu).

Question

Do L-space knots have any nontrivial mutants? Are L-space knots n-string prime?

Goals:

- Use contact geometry to study $Q \cap F_t$ and apply it to questions about mutation and knot Floer homology.
- Study the tunnel number of L-space knots.

uestion

Obstructions

Montesinos knots

Pretzel knots

More Questions

Thank you!

Allison Moore Montesinos knots, Hopf plumbings and L-space surgeries