Pretzel knots admitting L-space surgeries

Tye Lidman [‡] Allison Moore[†]

[†]Rice University

[‡]University of Texas

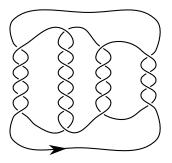
October 13, 2013

Proof sketch

Pretzel knots

$K \subset S^3$.

Pretzel knot (n_1, \ldots, n_k) , $n_i \in \mathbb{Z}$.



K = (5, -7, 5, -4)

Proof sketch

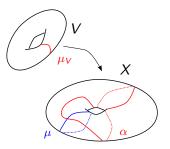
Observations

A familiar construction: Dehn surgery

$$egin{aligned} X &= S^3 -
u(K) \ H_1(X) &= < [\mu] > \ H_1(\partial X) &= < [\mu], [\lambda] >^{ab} \end{aligned}$$

$$V \to X$$
$$\mu_V \mapsto \alpha$$

 $S^3_{p/q}(K)$ is called (p, q)-**Dehn** surgery along K.



 $\alpha = p\mu + q\lambda$

Obstructions

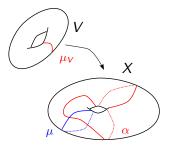
Proof sketch

Observations

A familiar construction: Dehn surgery

Exercise:
$$H_1(S^3_{p/q}(K)) = \mathbb{Z}/p\mathbb{Z}.$$

Lens spaces arise from this construction when K is the unknot.



 $\alpha = p\mu + q\lambda$

Proof sketch

Observations

A longstanding question

Question Which knots admit lens space surgeries?

Which knots admit lens space surgeries?

1971 (Moser) some torus knots.

Which knots admit lens space surgeries?

1971 (Moser) some torus knots.

1977 (Bailey-Rolfsen) iterated torus knot.

Which knots admit lens space surgeries?

- 1971 (Moser) some torus knots.
- 1977 (Bailey-Rolfsen) iterated torus knot.
- 1980 (Fintushel-Stern) hyperbolic knot (-2, 3, 7).

Which knots admit lens space surgeries?

- 1971 (Moser) some torus knots.
- 1977 (Bailey-Rolfsen) iterated torus knot.
- 1980 (Fintushel-Stern) hyperbolic knot (-2, 3, 7).
- 1990 (Berge) many examples.

Cyclic Surgery Theorem (CGLS) + Berge's construction = 'The Berge Conjecture.'

Knot Floer homology

(Ozsváth-Szabó, Rasmussen):

$$\begin{split} \mathcal{K} \subset \mathcal{M} & \rightsquigarrow & \cdots \subset \mathcal{F}_{i-1}C \subset \mathcal{F}_iC \subset \cdots \\ & \rightsquigarrow & \mathcal{H}_*(\mathcal{F}_iC/\mathcal{F}_{i-1}C) \end{split}$$

For me:

- $M = S^3$.
- Coefficients in $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$.
- Simplest version.
- $(m,s) \in \mathbb{Z} \oplus \mathbb{Z}$.

$$\widehat{\mathsf{HFK}}(K) = \bigoplus_{m,s} \widehat{\mathsf{HFK}}_m(K,s).$$
$$\Delta_K(t) = \sum_s \chi(\widehat{\mathsf{HFK}}(K,s)) \cdot t^s$$

L-spaces

Fact:

rank
$$\widehat{HF}(L(p,q)) = p = |H_1(L(p,q))|.$$

A $\mathbb{Q}HS^3$ Y is an **L-space** if

$$|H_1(Y;\mathbb{Z})| = \operatorname{rank} \widehat{HF}(Y).$$

Examples: S^3 , all lens spaces, 3-manifolds with finite π_1 .

Proof sketch

Motivating question recast

Question Which knots admit lens space surgeries?

becomes

Question

Which knots admit L-space surgeries?

L-space surgeries

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$,

 $\widehat{HFK}(K,s) \cong \mathbb{F} \text{ or } 0.$

(and some other conditions on Maslov grading).

L-space surgeries

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$,

 $\widehat{HFK}(K,s) \cong \mathbb{F} \text{ or } 0.$

(and some other conditions on Maslov grading).

Corollary

If K admits an L-space surgery, $|a_i| \leq 1$ for all coefficients a_i of $\Delta_K(t)$.

Pretzel knots with L-space surgeries

Theorem (Lidman-M)

Let K be a pretzel knot with any number of tangles. Then K admits an L-space surgery if and only if

1
$$K \simeq T(2, 2n+1)$$
, $n \in \mathbb{Z}$, or

2
$$K \simeq \pm (-2,3,q)$$
, $q \ge 1 \in \mathbb{Z}$ odd.

- 1 $(-2,3,1) \simeq T(2,5)$ 2 $(-2,3,3) \simeq T(3,4)$
- **3** $(-2,3,5) \simeq T(3,5)$

- 1 $(-2,3,1) \simeq T(2,5)$
- **2** $(-2,3,3) \simeq T(3,4)$
- 3 $(-2,3,5) \simeq T(3,5)$
- (-2,3,7): hyperbolic knot with two cyclic surgeries (+18, +19). (Fintushel-Stern).
- (-2,3,9): has two finite non-cyclic surgeries (Bleiler-Hodgson).

- 1 $(-2,3,1) \simeq T(2,5)$
- **2** $(-2,3,3) \simeq T(3,4)$
- **3** $(-2,3,5) \simeq T(3,5)$
- (-2,3,7): hyperbolic knot with two cyclic surgeries (+18, +19). (Fintushel-Stern).
- (-2,3,9): has two finite non-cyclic surgeries (Bleiler-Hodgson).
- (-2,3,q), q > 11 odd: S³_{2q+4}(K) is a Seifert fibered L-space (Ozsváth-Szabó).

- 1 $(-2,3,1) \simeq T(2,5)$
- **2** $(-2,3,3) \simeq T(3,4)$
- **3** $(-2,3,5) \simeq T(3,5)$
- (-2,3,7): hyperbolic knot with two cyclic surgeries (+18, +19). (Fintushel-Stern).
- (-2,3,9): has two finite non-cyclic surgeries (Bleiler-Hodgson).
- (-2,3,q), q > 11 odd: S³_{2q+4}(K) is a Seifert fibered L-space (Ozsváth-Szabó).

Proof sketch

It remains to show no other pretzel knot qualifies.

Proof sketch

It remains to show no other pretzel knot qualifies.

Theorem (Ni, Ghiggini)

K is fibered if and only if $\widehat{HFK}(K, g(K)) \cong \mathbb{F}$.

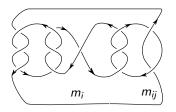
Theorem (Ozsváth-Szabó, Crowell-Murasugi)

An alternating knot admits an L-space surgery if and only if $K \simeq T(2, 2n + 1)$, some $n \in \mathbb{Z}$.

Thus we only consider non-alternating, fibered pretzel knots.

Fibered pretzel links

Classified by Gabai in the 1980s.



Three types:

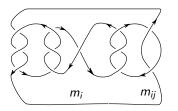
1 no *m_i*

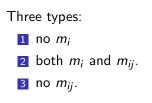
2 both m_i and m_{ij} .

3 no *m_{ij}*.

Fibered pretzel links

Classified by Gabai in the 1980s.





Within each type, we use two basic techniques to obstruct K from admitting an L-space surgery.

- **1** Show det(K) is sufficiently large.
- 2 Compute coefficients of $\Delta_{\mathcal{K}}(t)$ using the Kauffman state sum decomposition.

(1) Determinant condition

Lemma

If det(K) > 2g(K) + 1, then K is not an L-space knot.

(1) Determinant condition

Lemma

If det(K) > 2g(K) + 1, then K is not an L-space knot.

Proof.

If K is an L-space knot, then $|a_s| \leq 1 \ \forall s$. Then,

$$\det(\mathcal{K}) = |\Delta_{\mathcal{K}}(-1)| \leq \sum_{s} |a_{s}| \leq 2g(\mathcal{K}) + 1.$$

(2) A state sum for $\Delta_{\mathcal{K}}(t)$

Theorem (Kauffman)

The Alexander polynomial admits a state sum formula

$$\Delta_{\mathcal{K}}(\mathcal{T}) = \sum_{\mathbf{x} \in \mathcal{S}} (-1)^{\mathcal{M}(\mathbf{x})} \mathcal{T}^{\mathcal{A}(\mathbf{x})},$$

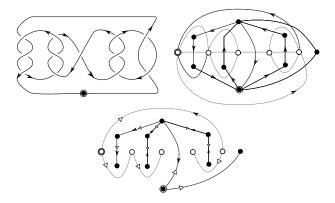
where S is the set of Kauffman states of a decorated knot diagram, and A and M are maps

$$A: \mathcal{S} \to \mathbb{Z}, \quad M: \mathcal{S} \to \mathbb{Z}.$$

Kauffman states

Let G_B and G_W be the black and white graphs associated with a checkerboard coloring of a decorated knot projection.

 $\mathcal{S} \longleftrightarrow \{ \text{ spanning trees of } \mathcal{G}_B \}$



Obstructions

Proof sketch

Basic idea

Apply mirroring, isotopy, and mutation to K until K^{τ} admits a diagram with a unique state \mathbf{x}_0 s.t.

$$A(\mathbf{x}_0) = -g(K^{\tau}).$$

Use \mathbf{x}_0 to count states \mathbf{x} such that

$$A(\mathbf{x}) = -g(K^{\tau}) + 1,$$

and calculate $M(\mathbf{x})$ relative to $M(\mathbf{x}_0)$. Then show

$$|a_{-g(K^{\tau}+1})| = \sum_{A(\mathbf{x})=-g(K^{\tau})+1} (-1)^{M(\mathbf{x})} > 1.$$

Because the Alexander polynomial is preserved by mutation, obtain $|a_s| > 1$ for some coefficient a_s of $\Delta_K(t)$.

Corollary (Ichihara-Jong, Lidman-M.)

The only nontrivial pretzel knots admitting nontrivial finite surgeries are $\pm(-2,3,q)$ for q = 1,3,5,7,9.

Observation

Up to mirroring, \exists ! fibered pretzel knot with the Alexander polynomial of an L-space knot, but no L-space surgery. This is

$$K = (3, -5, 3, -2).$$

Question

Observe that no pretzel knot admitting an L-space surgery contains an essential Conway sphere in its complement.

Question

Can an L-space knot have an essential Conway sphere?

Question

Do L-space knots have any nontrivial mutants?

Question

Observe that no pretzel knot admitting an L-space surgery contains an essential Conway sphere in its complement.

Question

Can an L-space knot have an essential Conway sphere?

Question

Do L-space knots have any nontrivial mutants?

Question

Can an lens space knot have an essential Conway sphere?

Answer: **No** (Wu).

Question

Observe that no pretzel knot admitting an L-space surgery contains an essential Conway sphere in its complement.

Question

Can an L-space knot have an essential Conway sphere?

Question

Do L-space knots have any nontrivial mutants?

Question

Can an lens space knot have an essential Conway sphere?

Answer: **No** (Wu).

Question

Can the knot Floer complex "see" essential Conway spheres?

Thank you!

More info

Conjecturally, the total rank of knot Floer homology is invariant under (genus two) mutation. Evidence:

- 1 All knots through 12 crossings.
- 2 Many computed examples of 13 and 14 crossings.
- **3** Related conjecture of Baldwin-Levine about δ -graded \widehat{HFK} .
- 4 And:

Theorem (M. and Starkston)

There exist infinitely many genus two mutant pairs K_n, K_n^{τ} with distinct knot Floer homology of the same total dimension.

Assuming total rank is preserved under mutation:

If true, then given an L-space knot K, and any mutant K^{τ} of K,

$$\widehat{\mathsf{HFK}}_m(K,s)\cong \widehat{\mathsf{HFK}}_m(K^{\tau},s).$$

This suggests that $K \simeq K^{\tau}$, i.e., that L-space knots admit only trivial mutations.

The red-herring pretzel (3, -5, 3, -2)

	A	-3	-2	$^{-1}$	0	1	2	3
М								
4								\mathbb{F}
3							\mathbb{F}^3	
2						\mathbb{F}^4	\mathbb{F}^2	
1					₽3	\mathbb{F}^4		
0				\mathbb{F}^4	\mathbb{F}^4			
-1			\mathbb{F}^3	\mathbb{F}^4				
-2		\mathbb{F}	\mathbb{F}^2					
$\Delta_{\mathcal{K}}(t)$		1	-1	0	1	0	-1	1