Montesinos knots, Hopf plumbings and L-space surgeries

Kenneth Baker \ddagger Allison Moore \dagger

[†]Rice University

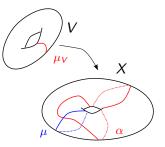
[‡]University of Miami

January 13, 2015

A longstanding question

Which knots admit lens space surgeries?

1971 (Moser)1977 (Bailey-Rolfsen)1980 (Fintushel-Stern)1990 (Berge)



 $\alpha = \mathbf{p} \mu + \mathbf{q} \lambda$

Cyclic Surgery Theorem (CGLS) + Berge's construction

= "The Berge Conjecture."

(Ozsváth-Szabó, Rasmussen): Knot Floer homology.

$$K \subset Y \longrightarrow \cdots \subset \mathcal{F}_{i-1}C \subset \mathcal{F}_iC \subset \dots$$

$$\downarrow$$

$$H_*(\mathcal{F}_iC/\mathcal{F}_{i-1}C)$$

$$\parallel$$

$$\widehat{\mathsf{HFK}}(K) = \bigoplus_{m,s}\widehat{\mathsf{HFK}}_m(S^3, K, s).$$

$$\Delta_K(t) = \sum_s \chi(\widehat{\mathsf{HFK}}(K, s)) \cdot t^s$$

$$A \ \mathbb{Q}HS^3 \ Y \text{ is an } \mathbf{L}\text{-space if } |H_1(Y; \mathbb{Z})| = \operatorname{rank}\widehat{HF}(Y)$$

Ex: S^3 , all lens spaces, 3-manifolds with finite π_1 .

Motivating question revisited

Question Which knots admit lens space surgeries?

becomes

Question

Which knots admit L-space surgeries?

L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$, $\widehat{HFK}(K, s) \cong \mathbb{F}$ or 0 (and some other conditions on Maslov grading).

L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$, $\widehat{HFK}(K,s) \cong \mathbb{F}$ or 0 (and some other conditions on Maslov grading).

Corollary (Determinant-genus inequality) If det(K) > 2g(K) + 1, then K is not an L-space knot.

L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If K admits an L-space surgery, then for all $s \in \mathbb{Z}$, $\widehat{HFK}(K,s) \cong \mathbb{F}$ or 0 (and some other conditions on Maslov grading).

Corollary (Determinant-genus inequality)

If det(K) > 2g(K) + 1, then K is not an L-space knot.

Proof.

If K is an L-space knot, then $|a_s| \leq 1 \, \forall$ coefficients a_s of $\Delta_K(t)$. Then,

$$\det(\mathcal{K}) = |\Delta_{\mathcal{K}}(-1)| \leq \sum_{s} |a_{s}| \leq 2g(\mathcal{K}) + 1.$$

More geometric obstructions

Theorem (Ni, Ghiggini)

K is fibered if and only if $\widehat{HFK}(K, g(K)) \cong \mathbb{F}$.

Thus L-space knots are fibered.

More geometric obstructions

Theorem (Ni, Ghiggini)

K is fibered if and only if $\widehat{HFK}(K, g(K)) \cong \mathbb{F}$.

Thus L-space knots are fibered.

Theorem (Hedden)

An L-space knot K supports the tight contact structure; equivalently, an L-space knot is strongly quasipositive.

Classification theorem

Theorem (Baker-M.)

Among the Montesinos knots, the only L-space knots are

- the pretzel knots P(-2,3,2n+1) for $n \ge 0$,
- and the torus knots T(2, 2n + 1) for $n \ge 0$.

Montesinos knots

$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$$

Figure: $M(\frac{3}{4}, -\frac{2}{5}, \frac{1}{3}|3)$.

Where $\alpha_i, \beta_i, e \in \mathbb{Z}$ and $\alpha_i > 1$, $|\beta_i| < \alpha_i$, and $gcd(\alpha_i, \beta_i) = 1$.

We need only consider fibered, non-alternating Montesinos knots,

$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$$

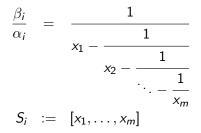
and we assume $r \ge 3$, because $r \le 2$ implies K is a two-bridge link.

Theorem (Ozsváth-Szabó)

An alternating knot admits an L-space surgery if and only if $K \simeq T(2, 2n + 1)$, some $n \in \mathbb{Z}$.

Fibered Montesinos knots

(Hirasawa-Murasugi): Classified fibered Montesinos knots with their fibers. For $K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$,



have two cases of S_i :

- **1** α_i are all odd \rightsquigarrow strict continued fractions.
- **2** α_1 is even, α_i is odd for $i > 1 \rightsquigarrow$ even continued fractions.

Example: odd case

Each β_i / α_i has a strict continued fraction:

$$S_i = [2a_1^{(i)}, b_1^{(i)}, \dots, 2a_{q_i}^{(i)}, b_{q_i}^{(i)}]$$

Hirasawa-Mursagi give strong restrictions on e, S_1, \ldots, S_m when M is fibered.

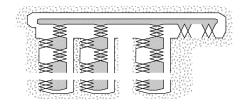


Figure: Image of odd-type Seifert surface borrowed from Hirasawa-Murasugi.

Open books for three-manifolds

- (F, ϕ) —an open book for closed 3-manifold Y.
 - $L = \partial F$ is the binding.
 - F is the fiber surface.

Open books for three-manifolds

- (F, ϕ) —an open book for closed 3-manifold Y.
 - $L = \partial F$ is the binding.
 - F is the fiber surface.
- ξ —a contact structure on Y.
 - Locally, ker α , $\alpha \wedge d\alpha \neq 0$
 - (Thurston-Winkelnkemper 1975)
 Every (F, φ) induces a contact structure.
 - (Giroux 2000) {or. ξ on Y}/ isotopy \longleftrightarrow {(F, ϕ) for Y} / positive stabilization

Plumbings of Hopf bands

Hopf links:

• $L^+ = \{(z_1, z_2) \in S^3 \subset \mathbb{C}^2 \mid z_1 z_2 = 0\}.$ • $L^- = \{(z_1, z_2) \in S^3 \subset \mathbb{C}^2 \mid z_1 \overline{z_2} = 0\}.$

Pos/neg (de)stabilization \leftrightarrow (de)plumbing of pos/neg Hopf bands.

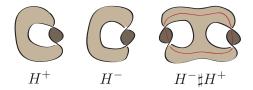


Figure: The connected sum of a positive and negative Hopf band.

Lemma (Contact Structures Lemma) 1 If $F \supset H_-$, then $\xi_{(F,\phi)}$ is overtwisted.

Allison Moore Montesinos knots, Hopf plumbings and L-space surgeries

Lemma (Contact Structures Lemma)

- **1** If $F \supset H_-$, then $\xi_{(F,\phi)}$ is overtwisted.
- **2** (Yamamoto):
 - If F contains a twisting loop, then $\xi_{(F,\phi)}$ is overtwisted.

Lemma (Contact Structures Lemma)

- **1** If $F \supset H_{-}$, then $\xi_{(F,\phi)}$ is overtwisted.
- (Yamamoto):
 If F contains a twisting loop, then ξ_(F,φ) is overtwisted.
- 3 (Giroux): If $F \supset H_+$ and

$$(F,\phi)=(F',\phi')*(H_+,\pi^+)$$

then

$$\xi_{(F,\phi)} \simeq \xi_{(F',\phi')}.$$

Theorem (Baker-M.)

A fibered Montesinos knot that supports the tight contact structure is isotopic to either

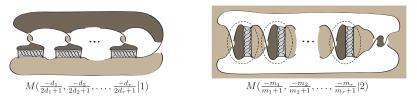


Figure: Left: odd type. Right: even type.

and its fiber is obtained from the disk by a sequence of Hopf plumbings.

Odd case

- Repeatedly apply the Contact Structures Lemma, parts 1 & 2 to identify negative Hopf bands and/or twisting loops.
- Cull these knots because they support an overtwisted contact structure.

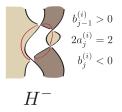
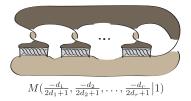


Figure: Finding negative Hopf bands in *F*.

Odd case

- Odd fibered Montesinos knots without a H⁻ remain.
- Successively deplumb H⁺ until a single H⁺ remains.
- These knots support the tight contact structure.



Determinant-genus inequality

Lemma

Let K be an odd fibered Montesinos knot supporting the tight contact structure. Then det(K) > 2g(K) + 1 unless $K = M(\frac{1}{3}, \frac{1}{3}, \frac{2}{5}|1).$

For any
$$K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \dots, \frac{\beta_r}{\alpha_r} \mid e\right)$$
,
$$\det(K) = |H_1(\Sigma_2(S^3, K); \mathbb{Z})| = \left|\prod_{i=1}^r \alpha_i \left(e + \sum_{i=1}^r \frac{\beta_i}{\alpha_i}\right)\right|.$$

For odd, fibered Montesinos knots,

$$g(\mathcal{K}) = rac{1}{2}\left(\sum_{i=1}^r b^{(i)} + |e| - 1
ight)$$

We verify det(K) > 2g(K) + 1 for such knots.

For odd, fibered Montesinos knots,

$$g(\mathcal{K}) = rac{1}{2}\left(\sum_{i=1}^r b^{(i)} + |e| - 1
ight)$$

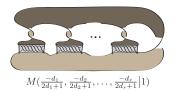
We verify det(K) > 2g(K) + 1 for such knots.

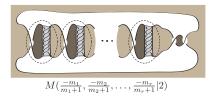
Finally, $K = M(\frac{1}{3}, \frac{1}{3}, \frac{2}{5}|1)$ is the knot 10_{145} . Since

$$\Delta_{10_{145}(t)} = t^2 + t - 3 + t^{-1} + t^{-2},$$

no odd fibered Montesinos knot admits an L-space surgery.

Similarly, pare down to the subfamily of fibered, even Montesinos knots which support the tight contact structure:





Lemma

 $M(\frac{-m_1}{m_1+1},\ldots,\frac{-m_r}{m_r+1}|2)$ are isotopic to pretzel links.

Pretzel knots

Theorem (Lidman-M.)

A pretzel knot admits an L-space surgery if and only if $K \simeq T(2, 2n + 1)$, $n \ge 0$, or $K \simeq \pm (-2, 3, 2n + 1)$, $n \ge 0$.

- Gabai's classification of fibered pretzel links.
- determinant-genus inequality
- Δ_K(t) obstructions using the Kauffman state sum:

$$\Delta_{\mathcal{K}}(\mathcal{T}) = \sum_{\mathbf{x} \in \mathcal{S}} (-1)^{M(\mathbf{x})} \mathcal{T}^{A(\mathbf{x})}$$

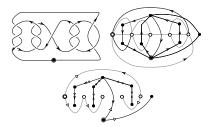


Figure: Computations use existence of essential Conway spheres.

Essential *n*-string tangle decompositions

Definition

 $K \subset S^3$ has an essential *n*-string tangle decomposition if \exists embedded sphere Q such that $Q \pitchfork K = \{2n \text{ pts}\}$ and where $Q - \partial \mathcal{N}(K)$ is essential in $S^3 - \mathcal{N}(K)$.

Theorem (Krcatovich)

L-space knots are 1-string prime.

Conjecture (Lidman-M.)

L-space knots are 2-string prime.

Remark: (Wu) \Rightarrow Amongst arborescent knots, a lens space knot cannot have an essential Conway sphere.

Braided satellites

- (Hayahsi-Matsuda-Ozawa): If a braided satellite knot has an essential tangle decomposition, then its companion has an essential tangle decomposition, too.
- (Hom-Lidman-Vafaee): An L-space knot that is a Berge-Gabai satellite knot must have an L-space knot as its companion.

If there exists a Berge-Gabai L-space knot with an essential tangle decomposition, its companion will also be an L-space knot with an essential tangle decomposition.

Tunnel number

What can we say about tunnel number?

- Many L-space knots have tunnel number one.
- Tunnel number one knots are *n*-string prime. (Gordon-Reid)
- For all N, there exists an L-space knot with tunnel number N. (Baker-M.)
- There exists a hyperbolic L-space knot with tunnel number two. (Motegi).

A Question

Thank you!

Allison Moore Montesinos knots, Hopf plumbings and L-space surgeries