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Abstract

The symmetric union of a knot, a generalization of the connect sum, has been of
interest since its description in the 1950s. We study how the number of equivalence
classes of p-colorings, a well-studied knot invariant, is affected by an n-twist sym-
metric union. We construct a class of knots for which for which the number of equiv-
alence classes of p-colorings of a symmetric union depends on n. We also construct
a knot for which the number of equivalence classes of p-colorings of a symmetric
union is independent of n.

1 Introduction

In 1957, S. Kinoshita and H. Terasaka introduced the symmetric union, a general-
ization of the connect sum of a knot and its mirror image, that introduces a tangle
replacement with n twists across the axis of symmetry. We give a formal definition
of symmetric union in Section 2 and for now, we simply denote a symmetric union
of a knot K with n twists by Sn(K ). There are several knot invariants of symmetric
unions that do not depend on the number of twists, n. For instance, when n is even
we have that det(Sn(K )) = (det(K ))2. Another example is that the Alexander polyno-
mial of Sn(K ) depends only on the parity of n; that is, for even n, ∆Sn (K ) = ∆K

2 and
for odd n, ∆Sn (K ) =∆K . [3] A final example is that for a prime p, Sn(K ) is p-colorable
if and only if K is p-colorable. Throughout the paper, we assume that p is an odd
prime and that n is a positive even integer.

In this paper, we seek to study the relationship between more refined knot in-
variants of K and Sn(K ). In particular, we investigate the relationship between the
number of equivalence classes p-colorings of a knot K and Sn(K ). Clearly, the num-
ber of equivalence classes of p-colorings is a more nuanced knot invariant than both
p-colorability and knot determinant. As such, one might anticipate a more compli-
cated relationship between the number of equivalence classes of p-colorings of K
and Sn(K ) that possibly depends on n. On the other hand, the previously mentioned
knot invariants do not depend n. We investigate this further in the sections to follow.

In Section 2, we provide background material necessary for our results. In Sec-
tion 3, we present our main results. Finally, we provide a conclusion and discussion
of further areas of research in Section 4.
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2 Background

2.1 Symmetric Unions

Suppose K is a knot. Denote the mirror of K by m(K ) and denote the connect sum
of K and m(K ) by K #m(K ). We use the definition of symmetric union provided in
[5].

Definition 1. Let K be a knot with oriented diagram D. A symmetric union diagram
of D is obtained by replacing an elementary 0-tangle with an elementary n-tangle
Tn with n 6= 0,∞ along the axis of mirror symmetry in the symmetric diagram of
K #m(K ). A knot which admits a symmetric union diagram is called a symmetric
union.

In an abuse of notation, we denote both a symmetric union of K and its knot
diagram by Sn(K ) and clarify the difference when necessary. While connected sum
is a well defined operation, the symmetric union Sn(K ) depends both of the diagram
of K and the placement of the tangle region. Let us say that an interior symmetric
union diagram of an oriented knot K is a symmetric union diagram where the n-
tangle is placed in the interior of the region in the diagram which is bounded by the
strands joined in the connect sum, as shown in Figure 1. We say that a knot which
admits an interior symmetric union diagram is called a interior symmetric union. In
a similar abuse of notation, we refer to both a interior symmetric union of K and its
diagram as simply an interior symmetric union.

Figure 1: Interior Symmetric Union

2.2 Seifert Surfaces, Graphs, and Matrices

Suppose K is a knot with diagram D . The corresponding checkerboard surface,
S ⊂R2 is obtained by coloring the pieces ofR2 \D either white or black such that bor-
dering pieces are colored differently and all black regions are bounded, then joining
the black regions by twisted bands passing through the crossing points. Note that
the checkerboard surface has the knot K as its boundary but it need not be ori-
entable. If the checkerboard surface it orientable, then it is a Seifert surface of K ,
an orientable surface that has K as its boundary. We define the Seifert graph of the
checkerboard surface to have vertices corresponding to the black regions of R2 \ D
and edges between vertices whose regions share a crossing. See Figure 2 for an illus-
tration of a checkerboard surface of the trefoil and the corresponding Seifert graph.

It is easy to see that a Seifert graph G is always planar, by construction. In fact, the
cycles that bound the interior regions of the planar embedding of G inherited from
the checkerboard surface form a basis for H1(G). We refer to this collection of cycles
as the preferred basis. We remark that the preferred basis of H1(G) is determined
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(a) (b)

Figure 2: Checkerboard Surface and Seifert Graph of the Trefoil

uniquely by the knot diagram D , up to orientation of its elements. The preferred
basis of the Seifert Graph is shown in Figure 2.

Let the closed paths α1, · · · ,αm be generators of H1(S). We consider S × [0,1] to
be a thickened version of the surface S and ‘lift’ each closed path αi into two paths

by αi and α
]
i , where αi is a closed path on S × {0} and α

]
i is a closed path on S × {1}.

The Seifert matrix, V , is a square matrix with m rows and columns whose entries

are the linking numbers of all pairs of loops αi and α
]
j . We say that V is the preferred

Seifert matrix if the generators α1, . . . ,αm of H1(S) correspond to the cycles in the
preferred basis for H1(G). For more information on Seifert matrices, we direct the
reader to [4]. Note that M = V +V T is a presentation matrix for the first homology
group of the 2-fold branched covering along K [6]. Hereafter, we shall refer to M as
a presentation matrix of the knot K and we say that M is the preferred presentation
matrix if V is the preferred Seifert matrix.

2.3 Pretzel Knots

For non-zero integers q1, q2, . . . , qm , the corresponding pretzel link, is given by the
standard projection shown in Figure 3 where the qi indicates qi crossing points with
sign corresponding to sign(qi ). Such a pretzel link is denoted by P (q1, q2, . . . , qm).
Here, we list a few basic results on pretzel links. First, P (q1, q2, . . . , qm) is a knot if
and only if either both n and all pi are odd or there is exactly one pi that is even.
Moreover, if q1, q2, . . . , qm are all odd then the checkerboard surface of the standard
projection of P (q1, q2, . . . , qm) is orientable. Finally, if q1, q2, . . . qm are all of the same
sign then P (q1, q2, . . . , qm) is alternating. Throughout this paper, we consider only
the standard projection of a pretzel knot. As such, notions that depend on a knot di-
agram, such as interior symmetric union and preferred Seifert matrix, will implicitly
use the standard projection of a pretzel knot.

2.4 p-Colorability

Given a knot diagram D and an odd prime p, a p-coloring of D is an assignment of
integers modulo p (colors) to the arcs of D that satisfies certain conditions. More
precisely, let A be the set of arcs of the diagram D . A p-coloring of D is a mapping
π : A → Fp such that for every crossing with over-arc ci and under-arcs c j and c j+1,
we have that π(c j )+π(c j+1)−2π(ci ) ≡ 0 mod p. See Figure 4 for an illustration of a
colored crossing as well as a 3−coloring of the trefoil knot.

Note that the constant mapping, π(c) = m for all c ∈ A, is a valid coloring for each
1 ≤ m ≤ p. These colorings are called the trivial colorings of K and are all equivalent.
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Figure 3: General Pretzel Link P (q1, q2, . . . , qm)

(a) Colored Crossing (b) 3-Coloring of the Trefoil

Figure 4: Illustrations of p-Colorings.

In general, two p-colorings π1 and π2 are said to be equivalent if there is a permuta-
tion φ of the colors {1, . . . ,m} such that φ◦π1 =π2. It is well-known that the number
of equivalent colorings is a knot invariant. We remark that it is not always the case
that a permutation of a p-coloring results in another p-coloring. See [1] for details.

To study the number of equivalence classes of colorings of a knot, we use a for-
mula given by Kauffman et al., in [1]. Note that our notions of p-nullity, and thus
the result, are phrased slightly differently since we are using Seifert matrices while
Kauffman et al. use coloring matrices. The two are equivalent since both the presen-
tation matrix M = V +V T obtained from the Seifert matrix and the coloring matrix
present first homology group of the 2-fold branched covering along a link [2, 3]. The
result on the number of equivalence classes of colorings of a knot is given below.

Definition 2. Let p be an odd prime. Suppose K is a knot with Seifert matrix V and
presentation matrix M = V +V T. The p-nullity of K is the nullity of M when the
entries are considered to be in Fp .

Proposition 2.1. [Proposition 3.1 in [1]] Let p be a prime and n be a positive integer.
A knot K with p-nullity n has

pn −1

p −1

equivalence classes of p-colorings.

3 Main Results

For notational convenience, denote by Dk (x) the diagonal matrix with zeros in all
but the kth diagonal entry, and the value x in that entry instead. Symbolically,

(Dk (x))i j = x ·δi k ·δ j k .
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Lemma 3.1. Suppose K is a knot with orientable checkerboard surface S, preferred
Seifert matrix V , and preferred presentation matrix M =V +V T. If Sn(K ) is an interior
symmetric union of K , then Sn(K ) has the presentation matrix: M 0

Dk(n) M

 ,

where k is the coordinate of the (unique) preferred-basis element of K affected by the
symmetric union.

Proof. The proof has four main steps.
Step 1. Denote the members of the preferred basis of H1(S) as α1, . . . ,αm . Notice

that the checkerboard surface for the mirror diagram m (K ) has an analogous pre-
ferred basis, and so denote these basis elements α′

1, . . . ,α′
m . Letting K #m (K ) denote

the knot diagram obtained by symmetrically connecting the two diagrams without
creating any new crossings, one can see that since K has an orientable bounded
checkerboard surface, K #m (K ) must have one as well; in particular, it consists of
the surfaces of the two components being “joined" together by merging two corre-
sponding checkerboard regions, see Figure 5a. In terms of the Seifert graphs, the
Seifert graph of K #m (K ) is obtained by identifying two corresponding vertices of
each of the component graphs, as in Figure 5b. Observe that a Seifert matrix for the
connect sum of K with its mirrored knot, K #m (K ) is given by: V 0

0 −V

 ,

where the preferred basis is simply the union of the two component bases, viz.
(α1, . . . ,αm ,α′

1, . . . ,α′
m). Notice that the negative sign comes from choosing the mir-

ror orientation for each α′
j relative to α j , and that lk

(
αi ,α′]

j

)
= lk

(
α′

i ,α]j

)
= 0 for all

i , j since such loops are unlinked.
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(a) Checkerboard Surface

(b) Seifert Graph

Figure 5: Effects of the Connect Sum Process

Step 2. Since an interior symmetric union is being performed, the checkerboard
surface for Sn (K ) will be the same as the one for K #m (K ) except with n − 1 new
checkerboard regions which “split" the central region. Since n is even, one can ex-
tend the orientation of the checkerboard surface of the connect sum to obtain an
orientation of the checkerboard surface of this symmetric union. See Figure 6a for
an illustration of this orientation. Moreover, the Seifert graph of Sn (K ) will be the
same as that for the connect sum except that central vertex will be split into a path
of n + 1 vertices. The edges that were connected to the central vertex will be split
into two types — those which connect to the “top" vertex and those which connect
to the “bottom" vertex. This process will still preserve the mirror symmetry since
the tangle region was placed symmetrically, and as a result a pair of interior regions
in the graph will have n more edges added to their common boundary, as in Figure
6b. Denote these regions as R and R ′.
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(a) Checkerboard Surface

(b) Seifert Graph

Figure 6: Effects of an Added n-Tangle

Step 3. A preferred Seifert matrix for Sn(K ), denoted Ṽn is:

Ṽn =
 V 0

0 −V

+


Dk

(
n
2

)
Dk

(
n
2

)
Dk

(
n
2

)
Dk

(
n
2

)  .

To see this, first observe that, from the results in step 2, a preferred basis for Sn(K )
is given by (α1, . . . , α̂k , . . . ,αm ,α′

1, . . . , α̂′
k , . . . ,α′

m), where k is the coordinate of the
unique preferred basis elements which corresponds to the interior regions R and
R ′ (see Figure 6b). Thus, the corresponding basis loops are denoted α̂k and α̂′

k in-
stead of αk and α′

k , whereas all other loops are exactly the same as in the connect
sum. It follows that the only preferred Seifert matrix elements that will be different
are those at positions (k,k), (k,k +m), (k +m,k), and (k +m,k +m). Since n is even
and the mirror orientation is given to the loops on the mirror surface, the linking
numbers (and hence the respective matrix elements) become:

lk
(
α̂k , α̂]k

)
= lk

(
αk ,α]k

)
+ n

2

lk
(
α̂k , α̂′]

k

)
= lk

(
αk ,α′]

k

)
+ n

2

lk
(
α̂′

k , α̂]k

)
= lk

(
α′

k ,α]k

)
+ n

2

lk
(
α̂′

k , α̂′]
k

)
= lk

(
α′

k ,α′]
k

)
+ n

2
.

The desired form of Ṽn follows.

7



Step 4. By step 3, a presentation matrix for Sn(K ) may be computed as

Ṽn + Ṽ T
n =

 M 0
0 −M

+
 Dk(n) Dk(n)

Dk(n) Dk(n)

 .

Applying elementary row and column operations:

 

 M −M
0 −M

+
 Dk(n) 0

Dk(n) 0



 

 M 0
0 −M

+
 0 0

Dk(n) 0



 

 M 0
Dk(n) M

 .

■
The nullity of a matrix can be easily discerned from its Smith Normal form. The

following lemma relates the Smith Normal form of a typical matrix arising from a
symmetric union to the Smith Normal form of the original knot’s presentation ma-
trix.

Lemma 3.2. Let M be an m×m symmetric matrix such that the kth row can be writ-
ten as a linear combination of the other columns. Furthermore, suppose M has Smith
Normal form given by:

SN (M) =


α1

. . .
αm−1

0


Then

SN

 M 0
Dk(n) M

=



α1

. . .
αn−1

α1

. . .
αn−1

n
0


Proof. Since row and column swaps do not affect the Smith Normal Form of a ma-
trix, one may assume without loss of generality that k = m. Let M ′ denote the
m × (m −1) matrix obtained by deleting the last column of M . Then, since the last
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column of M is a linear combination of the others, and moreover, by the symme-
try of M , the last row is a linear combination of the others, by elementary row and
column operations:

 M 0
0 ··· 0
...

. . .
...

0 ··· n

M

 


M ′ 0
...
0

0
0 ···
...

. . .

0
...

M ′T
0 ··· n 0 ··· 0


Now, it is easy to see that all the remaining row and column operations required
to take M ′ and its transpose to their Smith Normal forms will not involve the mth
column or the last row. Hence, the above matrix can be reduced to:

α1

. . .
αn−1

0 ··· 0

0
...
0
0

0

0 ···
...

. . .

0
...

α1 0

. . .
...

αn−1 0
0 ··· n 0 ··· ··· ··· ··· 0


which clearly can be reduced to the desired form. ■
Lemma 3.3. Let P

(
q1, q2, q3

)
be a pretzel knot with qi odd for each i . Then the pre-

ferred Seifert matrix is

V =
(

q1+q2
2

q2±1
2

q2∓1
2

q2+q3
2

)
so that the preferred presentation matrix is

M =V +V T =
(

q1 +q2 q2

q2 q2 +q3

)
Proof. Since each qi is odd, the checkerboard surface, S, shown in Figure 7a is ori-
entable and hence is a Seifert surface. This surface corresponds to a Seifert graph
as in Figure 7b. It is clear from Figure 7a that the preferred basis for H1(S) is α1,α2.
Since each qi is odd, q1 +q2 and q2 +q3 are both even, and so the linking numbers

between α1 and α
]
1 and between α2 and α

]
2 are q1+q2

2 and q2+q3
2 respectively. Notice

that so far, these values do not depend on the orientation of the loops. Now, orient
the loops so that the strands are pointing in the same direction in the central twist-

ing region. Then, since q2 is odd, the linking number between α1 and α
]
2 will be

q2±1
2 , depending on the choice of how the "sharp" loop is pushed off. In the other

case, the "plus" will become "minus" and vice versa.
■
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(a) Pretzel Knot with Preferred Basis
(b) Seifert Graph

Figure 7: A pretzel knot and Associated Seifert Graph.

Theorem 3.4. Let K be an alternating pretzel knot with prime determinant p given
by P

(
q1, q2, q3

)
such that qi is odd for each i = 1,2,3. Then for n ∈ 2Z, the number of

equivalence classes of p-colorings of an interior symmetric union Sn(K ) is given by:{
p +1 p | n,

1 p - n

Proof. By Lemma 3.3, a preferred presentation matrix for K is given by:

M =
(

q1 +q2 q2

q2 q2 +q3

)
(1)

Observe first that since det(K ) = p, M has Smith Normal form:(
1 0
0 p

)
≡

(
1 0
0 0

)
(mod p)

Since K is alternating, all the qi s have the same sign. By equation (1),

p = det(M) = q1q2 +q1q3 +q2q3

and hence for each i ,
0 < ∣∣qi

∣∣< ∣∣p∣∣
Moreover,

q3

(
q1 +q2

q2

)
+q1

(
q2

q2 +q3

)
=

(
p
p

)
≡

(
0
0

)
(mod p)

Therefore, in Fp coefficients, since q1 and q3 are units, each column of M̄ (the
matrix reduced mod p) is a linear combination of the other.
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By Lemmas 3.1 and 3.2, the Smith Normal form of the presentation matrix for
Sn (K ) with coefficients in Fp is given by:

1 0 0 0
0 1 0 0
0 0 n̄ 0
0 0 0 0


where n̄ denotes the equivalence class of n in Fp . It is clear that the nullity of this
matrix is: {

2 if p | n

1 if p - n

The desired result follows from Proposition 2.1. ■
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Figure 8: A Generic Interior Symmetric Union of a Pretzel Knot
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Theorem 3.5. There exist symmetric unions of the Pretzel knot K := P (11,21,−7) such
that the number of equivalence classes of 7-colorings do not depend on the number of
twists.

Proof. By Lemma 3.3, K has preferred presentation matrix:(
32 21
21 14

)
Notice that the determinant is 7. We may construct a symmetric union Sn(K ) of
K where the tangle region is placed as shown in Figure 8. Hence, for n even, by
Lemma 3.1, Sn (K ) has presentation matrix:

32 21 0 0
21 14 0 0
n 0 32 21
0 0 21 14


Reducing to coefficients in F7 gives:

4 0 0 0
0 0 0 0
n̄ 0 4 0
0 0 0 0


where n̄ denotes the equivalence class of n in F7. Thus, it is clear that the above
matrix has 7-nullity equal to 2 so that by Proposition 2.1, the number of equivalence
classes of 7-colorings is always 8, and is thus independent of n. ■

Remark. It is important to note that Theorem 3.5 has used Lemma 3.1, which as-
sumed that the tangle affected the kth column in the Seifert matrix. If the lemma
were modified so that the tangle only affected the second (as opposed to the first)
loop, the presentation matrix would have been of the form

4 0 0 0
0 0 0 0
0 0 4 0
0 n̄ 0 0

 mod 7,

which has a rank that is dependent on n̄ just as in Theorem 3.4.

4 Discussion

We have shown in Theorem 3.4 that for the class of 3-tangle alternating pretzel knots
with prime determinant p, the number of equivalence classes of p-colorings of their
interior symmetric union depends solely on n, the number of twists in the symmet-
ric union. In Theorem 3.5 and its associated remark, we have further shown that this
claim does not hold in general for non-alternating pretzel knots with prime deter-
minant. In particular, we have shown that this knot invariant may differ between
different symmetric unions of the same knot.

In the future, we would like to investigate the relationship between the number
of equivalence classes of p-colorings of a knot and symmetric unions of that knot in
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more general settings. In Theorem 3.5, we have shown that the conclusion of The-
orem 3.4 does not hold for all 3-tangle pretzel knots, even those with prime deter-
minant. We would like to better understand the necessary conditions for which the
number of equivalence classes of colorings of a symmetric union will depend on the
number of twists. For instance, we would like to consider alternating pretzel knots
with more than 3 twisting regions as well as pretzel knots that are non-alternating.

Secondly, we would like to understand how Lemma 3.1 might be extended to
knot diagrams with non-orientable checkerboard surfaces. This would involve re-
formulating the statement in terms of Gordon-Litherland form rather than Seifert
form. Considering Gordon-Litherland form might allow for an analogue of Lemma 3.1
for an odd number of twists and possibly arbitrary symmetric unions.

This work was motivated by the question, ‘Are all ribbon knots symmetric unions?’
A ribbon knot is a knot that is the boundary of a disc whose only intersections are
ribbon singularities. In his article, Lamm showed that all symmetric unions are rib-
bon knots but the converse remains unknown. In his paper, he found symmetric
diagrams for all but one of the 21 prime ribbon knots with up to 10 crossings [3].
We began this work hoping to find a knot invariant that could detect whether a knot
could be a symmetric union. However, because we constructed classes of knots for
which the number of equivalence classes of colorings of symmetric unions does and
does not depend on the number of twists in the twisting region, it seems unlikely
that these results will help provide an answer to the question.
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