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Abstract. We study series invariants for plumbed 3-manifolds and
knot complements twisted by a root lattice. Our series recover recent
results of Gukov-Pei-Putrov-Vafa, Gukov-Manolescu, Park, and Ri and
apply more generally to 3-manifolds which are not necessarily nega-
tive definite. We show that our series verify certain gluing and split-
ting properties related to the corresponding operations on 3-manifolds.
We conclude with an explicit description of the case of lens spaces and
Brieskorn spheres.

1. Introduction

A new invariant of negative-definite plumbed 3-manifolds has recently
been introduced in Gukov-Pei-Putrov-Vafa [GPPV20]. It takes the form of

a Laurent q-series denoted as Ẑa(q), with the index a encoding the choice of
a Spinc-structure as input. This series has two remarkable properties: it re-
covers the Witten-Reshetikhin-Turaev (WRT) invariants via certain appro-
priate limits [Mur23] and is known in some cases to be a quantum modular
form [LZ99, LM23].

The series Ẑa(q) is expected to be an instantiation of a 3D topological
quantum field theory yet to be determined in general. This expectation
has been supported in Gukov-Manolescu [GM21], where an analogous series

Ẑa(q, z) for knot complements has been introduced and shown to satisfy a

gluing formula. Moreover, the series Ẑa(q) has been extended to include the
datum of an arbitrary root lattice Q in Park [Par20], a generalization that
is motivated by the relationship between root systems and quantum groups
and their role as inputs to the construction of WRT invariants.

In [MT24], we showed that the series Ẑa(q) decomposes as an average

Ẑa(q) =
1

|Ξ|
∑
ξ∈Ξ

Yτ (q) with τ = (Q, a, ξ)

with each series Yτ (q) invariant under the Neumann moves amongst plumb-

ing trees. However, while Ẑa(q) is also invariant under the action of the Weyl
group W of Q, the summands Yτ (q) might not be so individually. This al-
lows one to obtain distinct series for different Spinc-structures conjugated
under the action of W . Here Ξ is an appropriate set of assignments ξ of
elements of the Weyl group W of Q to the vertices of the plumbing tree of
the 3-manifold.

MSC2020. 57K31 (primary), 57K16, 17B22 (secondary).
Key words and phrases. Quantum invariants of 3-manifolds, plumbed 3-manifolds,

Spinc-structures, root systems, Kostant partition functions.

1



2 A.H. MOORE AND N. TARASCA

For the series Ẑa(q) and Ẑa(q, z) to be a well-defined Laurent series, one
requires that the framing matrix of the plumbing tree is definite — or weakly
definite, as defined in [GM21]. This assumption was also used in [MT24] for
the series Yτ (q). In the case of Q = A1, this assumption was removed for

the series Ẑa(q) in Ri [Ri23], after introducing an additional variable t.
Here we show that the (weakly) definite assumption can be similarly re-

moved for our refinements Yτ (q) and arbitrary root lattices. Thus we only
require that the plumbing tree be reduced (as in §2.2) — an assumption also

needed in [Ri23, MT24] and for all other results on Ẑa(q). Importantly, ev-
ery plumbing tree can become reduced after a sequence of Neumann moves.
Thus in the closed case, we show:

Theorem 1. For a reduced plumbing tree Γ and a tuple τ = (Q, a, ξ), the
series Yτ (q, t) is

(i) invariant under the five Neumann moves between reduced plumbing
trees, and

(ii) invariant under the action of the Weyl group W , i.e.,

Yτ (q, t) = Yw(τ) (q, t) , for w ∈W

where w(τ) := (Q,w(a), w(ξ)).

When the (q, t)-series can be evaluated at t = 1, the resulting series
Yτ (q, 1) recovers the q-series from [MT24], whose average over ξ ∈ Ξ is the

series Ẑa(q) that is invariant under the action of W . In the event that Γ
is negative-definite, the series Yτ (q, t) is invariant under the two Neumann
moves between arbitrary (not necessarily reduced) negative-definite plumb-
ing trees. Thus, for a negative-definite plumbing tree Γ and Q = A1, we

recover the series ̂̂Za(q, t) from [AJK23] as

̂̂Za (q, t2) =
1

2|V (Γ)|

∑
ξ∈WV (Γ)

Yτ
(
q, tξ

)
with τ = (A1, a, ξ).

Similarly, for a knot complement obtained by a plumbing tree Γ with a
distinguished vertex v0, we have:

Theorem 2. For a reduced pair (Γ, v0) and a tuple τ = (Q, a, ξ), the series
Yτ (q, t, z) is

(i) invariant under the five Neumann moves between reduced plumbing
trees with a distinguished vertex, and

(ii) invariant under the action of the Weyl group W , i.e.,

Yτ (q, t, z) = Yx(τ) (q, t, z) , for x ∈W

where x(τ) := (Q, x(a), x(ξ)).
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When the (q, t, z)-series can be evaluated at t = 1, we recover the (q, z)-
series for Q = A1 from [GM21] as

Ẑa(q, z) =
1

2|V (Γ)|

∑
ξ∈WV (Γ)

Yτ (q, 1, z) with τ = (A1, a, ξ).

Next, we show that the above series for closed 3-manifolds and knot
complements verify a gluing formula. Assume M is obtained by gluing a
pair of plumbed knot complements (M±, ∂M±) := M

(
Γ±, v±0

)
along their

boundaries. Given a Spinc-structure a, select relative Spinc-structures a±

on (M±, ∂M±) which glue to a; see (2.10). Starting from ξ, define ξ± to be
the restriction of ξ to Γ±.

Theorem 3 (A gluing formula). One has

Yτ (M ; q, t) = (−1)4q�
∑
γ∈Q

[
Y+
γ (z)Y−γ (z)

]
0

where 4 and � are given in (6.2), and

Y±γ (z) := Yτ±
(
M±; q, t, z

)
with τ± = τ±(γ) := (Q, b±, ξ±)

for γ ∈ Q, and b± depending on a± and γ as in (6.3).

The operator [ ]0 appearing in the statement assigns to a series in z the
constant term in z.

Finally, we verify how the (q, t)-series varies under the Neumann splitting
move in Figure 2. Namely, for plumbing trees Γ1 and Γ2 obtained by splitting
a plumbing tree Γ◦ and tuples τ1 and τ2 obtained by splitting a tuple τ◦, we
show that the (q, t)-series for Γ◦ decomposes as a sum of product of certain
restrictions Ywτi (Γi; q, t) of the (q, t)-series for Γ1 and Γ2 times an additional
(q, t)-series:

Theorem 4 (A splitting formula). One has

Yτ◦ (Γ◦; q, t) =
∑
w∈W

Ywτ1 (Γ1; q, t)Ywτ2 (Γ2; q, t)Rw,τ◦(q, t)

where Rw,τ◦(q, t) is an explicit (q, t)-series given in Theorem 7.1.

Evidently, the (q, t)-series is not invariant under the splitting move. Thus
we pose the question:

Question 1. How can one modify the (q, t)-series so that it becomes invari-
ant under all Neumann moves between forests?

Structure of the paper. After reviewing the required background in §2,
we define Weyl assignments ξ in §3. The (q, t)-series for closed 3-manifolds is
defined in §4. Theorem 1 follows from Theorems 4.3 and 4.5. The (q, t, z)-
series for knot complements is defined in §5. Theorem 2 is proven there.
Theorem 3 follows from Theorem 6.1 and Theorem 4 from Theorem 7.1.
The case of lens spaces and Brieskorn spheres is explicitly discussed in §8.
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m1 ± 1 m2 ± 1±1

'

m1 m2
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m1 ± 1 ±1
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m1
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m1 m20

'
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Figure 1. The five Neumann moves on plumbing trees.

2. Background

In this section, we review the required background on plumbed 3-manifolds,
root lattices, and Spinc-structures.

2.1. Plumbed 3-manifolds. The input of our invariant will be a plumbing
tree Γ consisting of a vertex set V (Γ), an edge set E(Γ), and integer-valued
vertex weights mv for v ∈ V (Γ). Following the plumbing construction as in
Neumann [Neu81] (see also [Ném22, §3.3]), a plumbing graph Γ gives rise to
a closed oriented 3-manifold M(Γ) as follows. One assigns to each vertex an
oriented disk bundle over the sphere with Euler number mv, with two such
bundles plumbed together when the corresponding vertices are connected
by an edge in Γ. This construction yields a 4-manifold X = X(Γ), the
boundary of which is the plumbed 3-manifold M = M(Γ).

Alternatively, the plumbing construction may be realized by performing
Dehn surgery along a framed link. Specifically, the framed link L(Γ) cor-
responding to a plumbing tree Γ consists of an unknotted component with
framing mv for each vertex v of Γ, with two unknotted components chained
together whenever the corresponding vertices in Γ are connected by an edge.

Neumann showed that two plumbing graphs represent the same 3-manifold
up to orientation-preserving diffeomorphism if and only if they are related
by a finite sequence of combinatorial moves [Neu81]. The only such moves
between two plumbing trees are the five moves given in Figure 1 and their
inverses.

2.2. Reduced plumbing trees. We use reduced plumbing trees as in
[Ri23]. These are defined as follows. For a plumbing tree Γ, a subtree
of Γ is said to be (Neumann) contractible if it can be contracted down to a
single vertex by a sequence of the Neumann moves from Figure 1. A vertex
v of Γ is said to be reducible if v has degree at least 3 but, after contracting
all contractible subtrees incident to v, the degree of v drops down to 1 or 2.
Finally, Γ is said to be reduced if Γ has no reducible vertices. Any plumbing
tree can be reduced via a sequence of the Neumann moves from Figure 1.
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A result from [Ri23] shows that two reduced plumbing trees are related
by a sequence of the Neumann moves from Figure 1 if and only if they are
related by a sequence of such moves between reduced plumbing trees. For an
example of such move, consider the case when Γ consists of a single vertex.
Then Γ is reduced, and any of the moves (B±) or (C) yields a plumbing tree
which is also reduced.

We will thus define our series starting from reduced plumbing trees and
show that it is invariant under the Neumann moves between reduced plumb-
ing trees.

2.3. Homology of a plumbed 3-manifold. For a plumbing tree Γ, select
an order of its vertices v1, . . . , vs, with s = |V (Γ)|. Then Γ determines a
symmetric s× s matrix B, called the framing matrix :

B := (Bij)
s
i,j=1 with Bij :=


mi if i = j,

1 if i 6= j and (i, j) ∈ E(Γ),

0 otherwise

where mi is the weight of vi, and (i, j) denotes an edge between vi and
vj . We will denote the signature of B by σ = σ(B) and the number of its
positive eigenvalues by π = π(B).

The matrix B is the natural intersection pairing on L := H2 (X;Z) ∼= Zs.
Moreover, B realizes the natural inclusion L ↪→ L′, where L′ := H2 (X;Z) ∼=
H2 (X,M ;Z) ∼= Zs is the dual lattice. A standard homological argument
shows

(2.1) H1 (M ;Z) ∼= L′/L ∼= Zs/BZs.

We will assume throughout that det(B) 6= 0. In particular, B has maximal
rank, hence M is a rational homology sphere, i.e., H1 (M ;Q) = 0.

2.4. Root lattices and Spinc-structures. For a general treatment of root
lattices, we refer to [Bou02, Hum72]. Let Q be a root lattice of rank r with
root system ∆. Let ∆+ be a set of positive roots of ∆. The Weyl vector
ρ ∈ 1

2Q is defined to be half the sum of the positive roots. The Weyl group
W acting on Q is the group generated by reflections through the hyperplanes
orthogonal to the roots. The length `(w) of an element w ∈ W is its word
length expressed as a product of reflections and is equal to the number of
positive roots transformed by w into negative roots.

For a plumbing tree Γ such that det(B) 6= 0, the induced bilinear pairing
on the lattice L′ ⊗Z Q ∼= Qs is

〈, 〉 : Qs ×Qs → Q, 〈a, b〉 =
s∑

i,j=1

(
B−1

)
ij
〈ai, bj〉
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where 〈ai, bj〉 is the pairing in Q. The space of Spinc-structures on M =
M(Γ) with coefficients in Q is

(2.2) SpincQ (M) :=
δ + 2Qs

2Q〈B1, . . . , Bs〉
,

where Bi is the i-th column of B, and

δ := (2− deg(v1), · · · , 2− deg(vs))⊗ 2ρ ∈ Zs ⊗Z Q ∼= Qs.

One has an affine isomorphism SpincQ (M) ∼= H1(M ;Q) (this is clear from
(2.1)). Thus, the space H1(M ;Q) naturally acts on SpincQ (M) via

[x] · [a] = [a+ 2x] for x ∈ Qs and a ∈ δ + 2Qs.

Also, the Weyl group W acts component-wise on Qs, and this induces an
action of W on SpincQ (M).

While (2.2) uses the choice of a plumbing tree Γ for M , the resulting set
and the action of W on it are invariant under the five Neumann moves in
Figure 1 (see [MT24, Prop. 1.2] for an explicit proof).

2.5. Plumbed knot complements. We will also be interested in plumbed
3-manifolds with boundary homeomorphic to a torus, i.e., the complement
of a knot in a plumbed 3-manifold. We refer to [GM21, §5] for a general
reference on the topics reviewed here and in the next two subsections.

The plumbing presentation for such a 3-manifold (M,∂M) consists of a
pair (Γ, v0) where Γ is a plumbing tree and v0 is a distinguished vertex of Γ.
The component corresponding to v0 in the framed link L(Γ \ v0) represents
a knot K in M(Γ\v0). Then M = M(Γ, v0) is defined as the complement of
a tubular neighborhood of K in M(Γ\v0). It follows that M is a 3-manifold
with a torus boundary ∂M .

Moreover, the plumbing presentation specifies a parametrization of ∂M .
Indeed, the presentation specifies the meridian µ of the knot and a longitude
λ given by the framing of K determined by the weight of v0 in Γ (this is
the graph longitude from [GM21]). One orients λ counterclockwise, while
the orientation of µ is uniquely determined from the boundary orientation
of ∂M induced from the orientation of M .

As with closed plumbed 3-manifolds, two pairs (Γ, v0) and (Γ′, v′0) rep-
resent the same 3-manifold with boundary (M,∂M) up to orientation-pre-
serving diffeomorphism if and only if (Γ, v0) and (Γ′, v′0) are related by a
finite sequence of combinatorial moves from [Neu81]. The only such moves
between two plumbing trees with a distinguished vertex are the five moves
given in Figure 1 and their inverses. The distinguished vertex can be in-
volved in one of such moves, as long as it is not one of the vertices weighted
by ±1 or 0 in the top plumbing trees in Figure 1.

Select an order v0, v1, . . . , vs of the vertices of Γ, with s+ 1 = |V (Γ)|, and
let B be the framing matrix of Γ. The space of relative Spinc-structures for
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(M,∂M) is

(2.3) SpincQ (M,∂M) :=
δ̂ + 2Qs+1

2Q〈B1, . . . , Bs〉
,

where the zero-th column of B corresponding to v0 is omitted in the denom-

inator and δ̂ := δ − (2ρ, 0, . . . , 0), i.e.,

δ̂ := (1− deg(v0), 2− deg(v1), · · · , 2− deg(vs))⊗ 2ρ ∈ Zs+1 ⊗Z Q ∼= Qs+1.

One has an affine isomorphism SpincQ (M,∂M) ∼= H1(M,∂M ;Q). Also, the
component-wise action of the Weyl group W on Qs induces an action of W
on SpincQ (M,∂M).

In (2.3), the shift by δ̂ can be replaced with a shift by δ as in (2.2) — this
is the convention used in [GM21]. However, when doing so, the action of W
on the resulting identification of SpincQ (M,∂M) is not given by [a] 7→ [w(a)]

for w ∈W and a ∈ δ+ 2Qs+1, as observed for Q = A1 in [AJP24, Rmk 2.7].

2.6. Gluing knot complements. Consider a pair of plumbed knot com-
plements(

M+, ∂M+
)

:= M
(
Γ+, v+

0

)
and

(
M−, ∂M−

)
:= M

(
Γ−, v−0

)
.

As in §2.5, the plumbing presentations
(
Γ±, v±0

)
specify parametrizations of

∂M± with oriented meridians µ± and longitudes λ±. Let

h : ∂M+ → ∂M−

be the orientation-reversing homeomorphism induced by λ+ 7→ λ− and
µ+ 7→ −µ−. Gluing M+ and M− along their boundaries via h yields a
closed oriented 3-manifold

(2.4) M :=
(
M+, ∂M+

)
∪h
(
M−, ∂M−

)
.

This is a plumbed 3-manifold M ∼= M(Γ), where Γ is the plumbing tree
obtained by identifying the vertex v+

0 of Γ+ with the vertex v−0 of Γ−. The
weights of the resulting vertex v0 is defined to be equal to the sum of the
weights of the vertex v+

0 in Γ+ and the vertex v−0 in Γ− [GM21, §5.1].
To express the framing matrix of Γ in terms of the framing matrices B± of

Γ±, select an order v1, . . . , vm of the vertices of Γ+, with m = |V (Γ+)|, such
that vm is the distinguished vertex, and an order v1, . . . , vn of the vertices
of Γ−, with n = |V (Γ−)|, such that v1 is the distinguished vertex. Consider
the operation ∗ : Qm ×Qn → Qs, where s = m+ n− 1 = |V (Γ)|, defined as

(2.5) a+ ∗ a− :=
(
a+

1 , . . . a
+
m−1, a

+
m + a−1 , a

−
2 , . . . , a

−
n

)
.

The framing matrix of Γ is then given by the matrix

(2.6) B = B+ ∗B−
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defined by

Bi :=


B+
i ∗ 0 for i ∈ {1, . . . ,m− 1},

B+
m ∗B−1 for i = m,

0 ∗B−1+i−m for i ∈ {m+ 1, . . . , s}.

2.7. Spinc-structures under gluing. For a root lattice Q, consider iden-
tifications

SpincQ
(
M+, ∂M+

)
=

δ̂+ + 2Qm

2Q〈B+
1 , . . . , B

+
m−1〉

,

SpincQ
(
M−, ∂M−

)
=

δ̂− + 2Qn

2Q〈B−2 , . . . , B
−
n 〉
,

SpincQ (M) =
δ + 2Qs

2Q〈B1, . . . , Bs〉

(2.7)

as in (2.2) and (2.3), where δ̂± and δ are defined accordingly. The Mayer-
Vietoris sequence for the gluing (2.4) induces a surjective map

(2.8) SpincQ
(
M+, ∂M+

)
⊕ SpincQ

(
M−, ∂M−

)
→ SpincQ(M)

given by [a+]⊕ [a−] 7→ [a+ ∗ a−], where the operation ∗ is as in (2.5). This
map is independent of the choice of representatives (the case Q = A1 is in
[GM21, §5.4]). Moreover, the Mayer-Vietoris sequence induces an action of
H1(∂M+;Q) ∼= Q〈λ, µ〉 on the source of the map (2.8) given by

γλ :
[
a+
]
⊕
[
a−
]
7→
[
a+ + 2γB+

m

]
⊕
[
a− + 2γB−1

]
,

γµ :
[
a+
]
⊕
[
a−
]
7→
[
a+ + (0, . . . , 0, 2γ)

]
⊕
[
a− − (2γ, 0, . . . , 0)

](2.9)

for γ ∈ Q. Factoring by this action, the map (2.8) induces an isomorphism

(2.10)
SpincQ (M+, ∂M+)⊕ SpincQ (M−, ∂M−)

H1(∂M+;Q)

∼=−→ SpincQ(M).

3. Weyl assignments

Here we define Weyl assignments on reduced plumbing trees. These are
used in the definition of the (q, t)-series as an input for both the coefficients
of the series and the exponent of the variable t.

Let Q be a root lattice with Weyl group W . For a reduced plumbing tree
Γ with framing matrix B, define a Weyl assignment to be a map

ξ : V (Γ)→W, v 7→ ξv

such that

ξv = 1W if deg v = 2,

where 1W is the identity element in W , and such that the values on vertices
across what we call maximal contractible degree-2 paths are coordinated by
the following condition (3.1).
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First some notation. A path in Γ is said to have degree 2 if all its vertices
have degree 2 in Γ, exept the two terminal vertices which can have arbitrary
degree in Γ. As in §2.2, a path in Γ is contractible if it can be contracted
down to a single vertex by a sequence of the Neumann moves from Figure 1.
A contractible degree-2 path is maximal if it is not a proper subpath of a
contractible degree-2 path.

For a maximal contractible degree-2 path Γv,v′ with terminal vertices v
and v′ in Γ such that deg v 6= 2 or deg v′ 6= 2, the values of ξ at v and v′ are
coordinated by the following condition:

(3.1) ξv = ι∆π(v,v′)ξv′ ,

where ι is the element of W defined by

(3.2) ι(α) = −α for all α ∈ Q,
and ∆π(v, v′) is the difference in numbers of positive eigenvalues

(3.3) ∆π(v, v′) := π(B)− π(B),

with B equal to the framing matrix of the plumbing tree obtained from Γ
by contracting Γv,v′ .

Note that for a degree-2 path Γv,v′ , the map ξ assigns 1W to all vertices
of Γv,v′ different than v and v′. Moreover, if v has degree 2 in Γ, then
necessarily ξv = 1W , and thus ξv′ ∈ {1W , ι} by (3.1), and similarly if v′ has
degree 2 in Γ, then ξv ∈ {1W , ι}.

Let
Ξ := {Weyl assignments ξ on Γ}.

One has |Ξ| = |W |n where

n := |{v ∈ V (Γ) : deg v 6= 2}| − |{max. contractible deg-2 paths}|.
The assumption that our plumbing trees are reduced is crucial when com-

paring the sets of Weyl assignments between two plumbing trees:

Lemma 3.1. For two reduced plumbing trees Γ and Γ′ related by a finite
sequence of the Neumann moves from Figure 1, the sets of Weyl assignments
on Γ and Γ′ are isomorphic.

We will prove this statement and apply it in the proof of the next The-
orem 4.3, where we exhibit an explicit isomorphism S between the Weyl
assignments on two reduced plumbing trees related by a Neumann move
from Figure 1. In particular, a Neumann move between two reduced plumb-
ing trees does not create a reducible vertex which could increase the size of
the set of Weyl assignments.

Remark 3.2. The present definition of Weyl assignments is a refinement
of the definition appearing in [MT24, §3.2] in the sense that the values at
degree-1 and degree-0 vertices are possibly arbitrary here, subject to (3.1).

Also, while the idea of using Weyl assignments here originates from the
study of the case Q = A1 in [Ri23], the present Weyl assignments for Q =
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A1 differ from the analogous combinatorial feature used in [Ri23], where
degree-1 vertices where assigned possibly a value 0 in addition to signs ±1
corresponding to elements of the Weyl group W ∼= {±1} for Q = A1.

4. An invariant two-variable series

Here we define a three-variable series and show that it is an invariant of
closed plumbed 3-manifolds. We also show that the series is invariant under
the action of the Weyl group, thus proving Theorem 1.

4.1. The Kostant collection. Consider the formal series

(4.1) K(z) :=
∏
α∈∆+

∑
i≥0

z−(2i+1)α

 .

Here zα for a root α is a multi-index monomial defined as

(4.2) zα :=
r∏
i=1

z
〈α∨,λi〉
i

with α∨ := 2
〈α,α〉α being the coroot of α and λ1, . . . , λr being the funda-

mental weights. Hence K(z) ∈ Z
q
z−1

1 , . . . , z−1
r

y
, the ring of formal series in

variables z−1
1 , . . . , z−1

r .
Expanding, one has

K(z) =
∑
α∈Q

k(α) z−2ρ−2α

where k(α) is the Kostant partition function defined as

(4.3) k(α) :=
number of ways to represent α
as a sum of positive roots.

A key property of the series K(z) is the identity

(4.4)

(∑
w∈W

(−1)`(w) z2w(ρ)

)
K(z) = 1.

When Q = A1, this follows from a direct computation, and for arbitrary Q
this follows from the A1-case and the Weyl denominator formula

(4.5)
∑
w∈W

(−1)`(w) z2w(ρ) =
∏
α∈∆+

(
zα − z−α

)
.

More generally, for x ∈W , define the Weyl twist of K(z) by x as

(4.6) Kx(z) = (−1)`(x)
∑
α∈Q

k(α) z−x(2ρ+2α).



GLUING AND SPLITTING PLUMBED 3-MANIFOLDS 11

For x ∈W , consider the following collection of series

(4.7) Kx,n(z) :=



( ∑
w∈W

(−1)`(w) z2w(ρ)

)2

if n = 0,∑
w∈W

(−1)`(w) z2w(ρ) if n = 1,

1 if n = 2,

(Kx(z))n−2 if n ≥ 3.

We will refer to this as the Kostant collection. The series Kx,n(z) for n ∈
{0, 1, 2} does not depend on x.

4.2. The q-series. Let Γ be a plumbing tree, and let M := M(Γ) be the
3-manifold obtained by plumbing along Γ. After a sequence of Neumann
moves, one can assume that Γ is reduced. Consider a tuple

(4.8) τ = (Q, a, ξ)

with

(i) Q a root lattice;
(ii) a ∈ δ + 2Qs a representative of a Spinc-structure [a] ∈ SpincQ(M) as

in (2.2), with s = |V (Γ)|;
(iii) ξ ∈ Ξ a Weyl assignment on Γ as in §3.

Define the series

Yτ (q) = Yτ (M(Γ); q)

as

Yτ (q) := (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉
∑

`∈a+2BQs

cΓ,ξ(`) q
− 1

8
〈`,`〉

where

cΓ,ξ(`) :=
∏

v∈V (Γ)

[Kξv ,deg v(zv)]`v ∈ Z.(4.9)

The operator [ ]α assigns to a series in z the coefficient of the monomial zα.

Lastly, `v ∈ Q denotes the v-component of ` ∈ Qs = QV (Γ) for v ∈ V (Γ).

The series Yτ (q) is not always well defined. In fact, if the framing matrix
B is negative definite (or more generally, weakly negative definite, as in
[GM21, Def. 4.3]), then the series Yτ (q) exists and one has

Yτ (q) ∈ q
1
2

(3σ−trB)〈ρ,ρ〉− 1
8
〈a,a〉 Z

((
q

1
2

))
.

Indeed, in those cases, the exponents of q are bounded below, and there are
only finitely many ` that contribute to each power of q. (See also [MT24,
Lemma 3.2].) One uses that 〈`, `〉 = 〈a, a〉+4Z for ` ∈ a+2BQs to conclude
that the powers of q are half-integers, up to an overall rational shift.
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A similar statement holds if B is positive definite (or weakly positive
definite), and in this case one replaces q with q−1, that is, Yτ (q) is Laurent

in q−
1
2 , up to an overall factor given by a rational power of q.

However, for an arbitrary invertible framing matrix B, the values 〈`, `〉 in
the exponent of q may not be bounded above nor below, and there might
be infinitely many ` that contribute to the same value 〈`, `〉. To overcome
this issue, we introduce a new variable u.

4.3. The (q, t)-series. For a reduced plumbing tree Γ with invertible fram-
ing matrix and for τ = (Q, a, ξ) as in (4.8), define the series

Yτ (q, t) = Yτ (M(Γ); q, t)

as

Yτ (q, t) := (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉
∑

`∈a+2BQs

cΓ,ξ(`) t
ξ−1(`) q−

1
8
〈`,`〉

with cΓ,ξ(`) as in (4.9) and

(4.10) ξ−1(`) :=
∑
v

ξ−1
v (`v) ∈ Q.

Thus tξ
−1(`) is a multi-index monomial in variables t1, . . . , tr as in (4.2).

Lemma 4.1. For the series Yτ (q, t), the exponents of t are bounded above,
and there are only finitely many ` that contribute to each power of t. Thus
Yτ (q, t) exists for all reduced plumbing trees having invertible framing matrix
and is an element of the following ring:

Yτ (q, t) ∈ q
1
2

(3σ−trB)〈ρ,ρ〉− 1
8
〈a,a〉Z

[
q±

1
2

] ((
t−1
1 , . . . , t−1

r

))
.

Proof. We analyze the definition in (4.7) and consider the cases when

(4.11) [Kx,deg v(zv)]`v 6= 0.

For a vertex v with deg v ≤ 2, there are only finitely many `v such that
(4.11) holds. Instead for a vertex v with deg v ≥ 3, if (4.11) holds, then
necessarily x−1 (`v) is a sum of negative roots. The statement follows. �

It may not be possible to evaluate the series Yτ (q, t) at t = 1 (i.e., t1 =
· · · = tr = 1), as this might result in infinitely many contribution to a given
monomial in q. However, one has from the definition:

Lemma 4.2. If the series Yτ (q, t) can be evaluated at t = 1, then one has
Yτ (q, 1) = Yτ (q).

While the series Yτ (q, t) is expressed in terms of a plumbing presentation
Γ for M , we show:

Theorem 4.3. Any two reduced plumbing trees for M related by a sequence
of the five Neumann moves (A±), (B±), (C) yield the same series Yτ (q, t).
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4.4. Proof of invariance. First we prove the invariance of the (q, t)-series
with respect to the action of the Weyl group and then prove Theorem 4.3.

Remark 4.4. (i) In the arguments below, we apply various identities
from [MT24] concerning the coefficients cΓ,ξ(`) from (4.9). For this,
we emphasize that, despite some apparent differences in the defini-
tion, these cΓ,ξ(`) are equivalent to the ones from [MT24]. Indeed,
the difference stems from the fact that the Weyl assignments defined
here are more general than the ones used in [MT24], as their values
on vertices of degree 0 and 1 can possibly be arbitrary here — see Re-
mark 3.2. However, Kx,deg v(z) is independent of x for deg v ≤ 2, as
in [MT24]. Hence, the coefficients cΓ,ξ(`) from (4.9) are not affected
by the change of the definition of Weyl assignments.

(ii) The extra flexibility of the present Weyl assignments on vertices of
degree 0 and 1 plays a role in the exponents of the variable t.

Theorem 4.5. For ` ∈ δ + 2Qs, one has

cΓ,ξ(`) = cΓ,w(ξ)(w(`)) for w ∈W.

This implies Theorem 1(ii).

Proof. By the definition (4.7), one has

[Kx,n(z)]` = (−1)`(w)n [Kwx,n(z)]w(`) .

Multiplying over all vertices and using the fact that the sum of the degree
of the vertices is even, the first part of the statement follows.

Since ξ−1(`) = (w(ξ))−1(w(`)) and 〈`, `〉 = 〈w(`), w(`)〉, one has

cΓ,ξ(`) t
ξ−1(`) q−

1
8
〈`,`〉 = cΓ,wξ(w(`)) t(w(ξ))−1(w(`)) q−

1
8
〈w(`),w(`)〉

for w ∈W . Hence the statement. �

We now proceed to prove Theorem 4.3.

Proof of Theorem 4.3. We argue that the series is invariant under each of
the five Neumann moves between two reduced plumbing trees. For each
move, let Γ be the bottom plumbing tree with framing matrix B and Γ◦ the
top plumbing tree with framing matrix B◦. The number of vertices of Γ and
Γ◦ will be denoted by s and s◦, and the number of positive eigenvalues of B
and B◦ will be denoted by π and π◦.

For each move, we first observe how the factor in front of the sum in the
series

(4.12) (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉

changes. We then define an injective map

R : Qs → Qs◦

inducing an isomorphism of Spinc-structures on M(Γ) and M(Γ◦) and an
isomorphism

S : Ξ→ Ξ◦
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of Weyl assignments for Γ and Γ◦. Thus for a tuple τ = (Q, a, ξ) for Γ, we
prove

Yτ (M(Γ); q, t) = Yτ◦ (M(Γ◦); q, t)

where τ◦ = (Q,R(a), S(ξ)). For this, we argue that the contribution of each
representative ` of the Spinc-structure [a] to the series for Γ matches a sum
of contributions to the series for Γ◦.

Step (A−). As shown in [MT24, Proof of Thm 3.3], the factor (4.12) in
front of the sum in the series is invariant. The map R for this move is

R : Qs → Qs+1, (a1, a2) 7→ (a1, 0, a2)

where the subtuple a1 corresponds to the vertices of Γ consisting of the vertex
weighted by m1 and all vertices on its left, and likewise a2 corresponds to
the vertex weighted by m2 and all vertices on its right. To define the map S,
note that a Weyl assignment ξ on Γ uniquely determines a Weyl assignment
ξ◦ on Γ◦ since the added vertex in Γ◦ has degree 2 and all Weyl assignments
assign 1W to such a vertex.

From [MT24, (4.3)], we have that

cΓ,ξ(`) q
− 1

8
〈`,`〉 = cΓ◦,ξ◦(R(`)) q−

1
8
〈R(`),R(`)〉.

Moreover, since Γ and Γ◦ differ only at a single degree-2 vertex and the
corresponding component of R(`) is 0 by definition, one has

ξ−1
◦ (R(`)) = ξ−1(`) + 1w(0) = ξ−1(`),

where ξ−1
◦ = S(ξ−1), hence the exponents of t match as well.

Step (A+). In this case, the power of q in the factor (4.12) in front of the
sum in the series is invariant. The function R for this move is

R : Qs → Qs+1, (a1, a2) 7→ (a1, 0,−a2)

with notation as in the previous move. The map S is ξ 7→ ξ◦ where for a
vertex v with deg v 6= 2, one has

ξ◦ : v 7→
{
ξv if v is on the left of the added vertex,
ιξv if v is on the right of the added vertex

where ι is as in (3.2).
From [MT24, (4.8)] one has that

(−1)|∆
+|π cΓ,ξ(`) q

− 1
8
〈`,`〉 = (−1)|∆

+|π◦ cΓ◦,ξ◦(R(`)) q−
1
8
〈R(`),R(`)〉.

As before Γ and Γ◦ differ only at a single degree-2 vertex. Now, one has

ξ−1
◦ (R(`)) =

∑
v left

ξ−1
◦,v (R(`)v) +

∑
v right

ξ−1
◦,v (R(`)v)

=
∑
v left

ξ−1
v (`v) +

∑
v right

ιξ−1
v (−`v)

= ξ−1(`),
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since ιξ−1
v (−`v) = ξ−1

v (`v) by linearity. Thus the exponents of t match.

Step (B−). Now the factor (4.12) in front of the sum in the series for Γ◦
contains an extra factor q−

1
2
〈ρ,ρ〉. The trees Γ and Γ◦ differ only at a single

leaf v0 adjacent to a vertex v1. For w ∈ W , consider the map from [MT24,
(4.9)]

Rw : Qs → Qs+1, (a], a1) 7→ (a], a1 + 2w(ρ),−2w(ρ)),

where a1 corresponds to the vertex v1 of Γ, and a] corresponds to all other
vertices of Γ. For the isomorphism between Spinc-structures, we use the
map induced by R := Rw with w = 1W .

The condition (3.1) implies that the map S is given by ξ 7→ ξ◦ where ξ◦
assigns ξv0 = ξv1 at v0 and agrees with ξ at all other vertices.

From [MT24, (4.12)], we have

cΓ,ξ(`) q
− 1

8
〈`,`〉 = q−

1
2
〈ρ,ρ〉

∑
w∈W

cΓ◦,ξ◦(Rw(`)) q−
1
8
〈Rw(`),Rw(`)〉.

In the computation of the exponent of t, the vertices v0 and v1 contribute

ξ−1
v1

(`1 + 2w(ρ)) + ξ−1
v0

(−2w(ρ)) = ξ−1
v1

(`1 + 2w(ρ)− 2w(ρ)) = ξ−1
v1

(`1) .

Hence ξ−1
◦ (Rw(`)) = ξ−1 (`) for all w ∈W .

Step (B+). The factor (4.12) in front of the sum in the series for Γ◦ has an

extra factor (−1)|∆
+|q

1
2
〈ρ,ρ〉. As with the previous move, Γ and Γ◦ differ only

at a single leaf v0 adjacent to a common vertex v1. For w ∈W , consider the
map from [MT24, (4.13)]

Rw : Qs → Qs+1, (a], a1) 7→ (a], a1 + 2w(ρ), 2w(ρ)).

As before, R = Rw with w = 1W . By (3.1), the map S is given by ξ 7→ ξ◦
where ξ◦ assigns ξv0 = ιξv1 at v0 and agrees with ξ at all other vertices.

From [MT24, (4.16)], we have

(−1)|∆
+|πcΓ,ξ(`) q

− 1
8
〈`,`〉

= (−1)|∆
+|π◦q

1
2
〈ρ,ρ〉

∑
w∈W

cΓ◦,ξ◦(Rw(`)) q−
1
8
〈Rw(`),Rw(`)〉.

Moreover,

ξ−1
v1

(`1 + 2w(ρ)) + ξ−1
v0

(2w(ρ)) = ξ−1
v1

(`1 + 2w(ρ)− 2w(ρ)) = ξ−1
v1

(`1)

since ιξ−1
v1

(2w(ρ)) = ξ−1
v1

(−2w(ρ)) by linearity. Hence ξ−1
◦ (Rw(`)) = ξ−1 (`)

for all w ∈W .

Step (C). The factor (4.12) in front of the sum in the series for Γ◦ has an

extra factor (−1)|∆
+|. Let v0 be the vertex of Γ with weight m1 +m2, and

let v1, v
′
0, v2 be the vertices of Γ◦ with weights m1, 0, and m2, respectively.

For a ∈ Qs, write a = (a], a0, a[), where the entry a0 corresponds to v0, the
subtuple a] corresponds to all vertices on the left of v0, and the subtuple a[
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to all vertices on the right of v0. For β ∈ Q, consider the map from [MT24,
(1.8)]

Rβ : Qs → Qs+2, (a], a0, a[) 7→ (a], a0 + β, 0, β,−a[)

where the entries a0 + β, 0, and β correspond to the vertices v1, v
′
0, v2 in

Γ◦. For β = β0 defined as in [MT24, (1.9)], the map R = Rβ induces an
isomorphism of Spinc-structures.

The map S is defined as ξ 7→ ξ◦ such that, for a vertex v with deg v 6= 2,
one has

ξ◦ : v 7→
{
ξv if v < v1,
ιξv if v > v2.

Here v < v′ if v is on the left of v′. Moreover, define

ξ◦ (v1) := ξ (v0) and ξ◦ (v2) := ιξ (v0) .

From [MT24, (4.22)], one has

(−1)|∆
+|πcΓ,ξ(`)q

− 1
8
〈`,`〉 = (−1)|∆

+|π◦
∑

β∈β0+2Q

cΓ◦,ξ◦(Rβ(`))q−
1
8
〈Rw(`),Rw(`)〉.

Furthermore, for each β, one has

ξ−1
◦ (Rβ(`)) =

∑
v<v1

ξ−1
◦,v (`v) + ξ−1

◦,v1
(`0 + β) + ξ−1

◦,v2
(β) +

∑
v>v2

ξ−1
◦,v (−`v)

=
∑
v<v1

ξ−1
v (`v) + ξ−1

v1
(`0 + β) + ιξ−1

v1
(β) +

∑
v>v2

ιξ−1
v (−`v)

=
∑
v<v0

ξ−1
v (`v) + ξ−1

v0
(`v0) +

∑
v>v0

ξ−1
v (`v)

= ξ−1(`),

since ιξ−1
v (−`v) = ξ−1

v (`v) by linearity. Thus ξ−1
◦ (Rβ(`)) = ξ−1(`) for all

β ∈ Q.

This concludes the proof of the statement. �

5. An invariant three-variable series for knot complements

Here we define a (q, t, z)-series for plumbed knot complements and prove
Theorem 2. We use notation as in §2.5.

Consider a plumbed knot complement (M,∂M). We may assume that
after a sequence of Neumann moves, (M,∂M) is constructed by plumbing
along a reduced plumbing tree Γ with a distinguished vertex v0. We assume
that Γ has invertible framing matrix.

Consider a tuple τ = (Q, a, ξ) as in (4.8). We define the series

Yτ (q, t, z) := Yτ (M(Γ, v0); q, t, z)
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as

(5.1) Yτ (q, t, z)

:= (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉
∑

`∈a+2Q〈B1,...,Bs〉

cΓ,ξ,v0(`) tξ
−1(`) q−

1
8
〈`,`〉

where

(5.2) cΓ,ξ,v0(`) := z−`v0Kξ(v0),1+deg v0
(z)

∏
v 6=v0

[Kξv ,deg v(zv)]`v .

Here the notation is as in (4.9). The coefficients cΓ,ξ,v0(`) lie in a ring that

depends on ξ(v0). E.g., for ξ(v0) = 1W , since K(z) ∈ Z
q
z−1

1 , . . . , z−1
r

y
, one

has

cΓ,ξ,v0(`) ∈ Z
((
z−1

1 , . . . , z−1
r

))
and thus as in Lemma 4.1, one has

Yτ (q, t, z) ∈ q
1
2

(3σ−trB)〈ρ,ρ〉− 1
8
〈a,a〉Z

((
z−1

1 , . . . , z−1
r

)) [
q±

1
2

] ((
t−1
1 , . . . , t−1

r

))
.

Proof of Theorem 2. One needs to check invariance under the five Neumann
moves given in Figure 1 for which the distinguished vertex v0 is not one of
the vertices weighted by ±1 or 0 in the top plumbing trees there (see §2.5).
For this, the argument for the proof of Theorem 4.3 applies after replacing
the contribution [

Kξ(v0),deg v0
(zv0)

]
`v0

to the coefficients cΓ,ξ(`) in (4.9) with the contribution

z−`v0Kξ(v0),1+deg v0
(z)

to cΓ,ξ,v0(`) in (5.2). �

6. A gluing formula

We consider here a closed oriented 3-manifold M obtained by gluing two
plumbed knot complements and show how to obtain the (q, t)-series of M
from the (q, t, z)-series of the knot complements via a gluing formula. We
use notation as in §§2.6–2.7.

Assume M = M(Γ) is obtained by gluing a pair of plumbed knot com-
plements (

M±, ∂M±
)

= M
(
Γ±, v±0

)
along their boundaries. Assume that Γ and Γ± are reduced and have in-
vertible framing matrices. Consider a tuple τ = (Q, a, ξ) for M as in (4.8).
Starting from a, select representatives

a+ ∈ δ̂+ + 2Qm and a− ∈ δ̂− + 2Qn
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of relative Spinc-structures [a±] ∈ SpincQ (M±, ∂M±) as in (2.7) such that

a = a+ ∗ a−. This condition implies that the isomorphism of Spinc-structures
in (2.10) identifies [a] with the orbit of [a+]⊕ [a−] under the action of

H1(∂M+;Q) ∼= Q〈λ, µ〉.
Starting from ξ, define ξ± to be the Weyl assignments on Γ± given by
restricting ξ.

Theorem 6.1. One has

Yτ (M ; q, t) = (−1)4q�
∑
γ∈Q

[
Y+
γ (z)Y−γ (z)

]
0

(6.1)

where

4 := |∆+|
(
π(B)− π(B+)− π(B−)

)
,

� :=
3

2

(
σ(B)− σ(B+)− σ(B−)

)
〈ρ, ρ〉

− 1

8
〈a, a〉+

1

8
〈a+, a+〉+

1

8
〈a−, a−〉,

Y±γ (z) := Yτ±
(
M±; q, t, z

)
,

(6.2)

with tuples
τ± = τ±(γ) :=

(
Q, b±, ξ±

)
for γ ∈ Q,

and

b+ = b+(γ) := a+ + 2γB+
m, b− = b−(γ) := a− + 2γB−1 .(6.3)

Remark 6.2. The orbit of [a+]⊕ [a−] under the action of Q〈λ〉 from (2.9) is

Q〈λ〉
(
[a+]⊕ [a−]

)
=
{

[b+]⊕ [b−] : b+ = b+(γ) and b− = b−(γ) for some γ ∈ Q
}
.

Hence, under the isomorphism (2.10), all [b+]⊕ [b−] for γ ∈ Q are identified
with the same Spinc-structure [a] on M . Indeed, the isomorphism (2.10)
maps [b+]⊕ [b−] to the class of

b+ ∗ b− = a+ ∗ a− + 2γ
(
B+
m ∗B−1

)
for γ ∈ Q.

As B+
m ∗B−1 = Bm, one has

b+ ∗ b− ≡ a+ ∗ a− mod 2Q〈B1, . . . , Bs〉.
Hence, all b+ ∗ b− for γ ∈ Q represent the same class [a] on M .

Lemma 6.3. (i) The quantity � is independent of the choice of repre-
sentatives of Spinc-structures a± ∈ [a±] and a ∈ [a] subject to the
constraint a = a+ ∗ a−, and so is the rest of the right-hand side of
(6.1).

(ii) Moreover, � is invariant under the action of Q〈λ〉 on [a+] ⊕ [a−],
and so is the rest of the right-hand side of (6.1).

(iii) While � is not invariant under the action of Q〈µ〉 on [a+] ⊕ [a−],
the whole right-hand side of (6.1) is.
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Proof. For (i), consider c± ∈ [a±], that is,

c+ = a+ + 2B+v+ for some v+ ∈ Qm−1 × {0},
c− = a− + 2B−v− for some v− ∈ {0} ×Qn−1.

Let c := c+ ∗ c−. Then c = a + 2B (v+ ∗ v−), hence c ∈ [a]. To verify the
statement about � it is enough verify that

〈a, a〉 − 〈a+, a+〉 − 〈a−, a−〉 = 〈c, c〉 − 〈c+, c+〉 − 〈c−, c−〉.

Expanding, one has

〈c, c〉 = 〈a, a〉+ 4aT
(
v+ ∗ v−

)
+ 4

(
v+ ∗ v−

)T
B
(
v+ ∗ v−

)
,

〈c±, c±〉 = 〈a±, a±〉+ 4
(
a±
)T
v± + 4

(
v±
)T
B±v±.

(6.4)

The statement follows from the identities

aT
(
v+ ∗ v−

)
=
(
a+
)T
v+ +

(
a−
)T
v−,(

v+ ∗ v−
)T
B
(
v+ ∗ v−

)
=
(
v+
)T
B+v+ +

(
v−
)T
B−v−

which hold by linearity.

For (ii), consider b± in the orbit of [a+]⊕ [a−] under the action of Q〈λ〉,
that is, b± = b±(γ) for some γ ∈ Q as in (6.3), see Remark 6.2. Let
b := b+ ∗ b−. Then b = a + 2γBm. To verify the statement about �, it is
enough verify that

〈a, a〉 − 〈a+, a+〉 − 〈a−, a−〉 = 〈b, b〉 − 〈b+, b+〉 − 〈b−, b−〉.

Write

b+ = a+ + 2γB+em, b− = a− + 2γB−e1, b = a+ 2γBem,

where ei is the i-th standard basis element in the appropriate vector space.
Expanding as in (6.4), the statement follows from the identities

aT em =
(
a+
)T
em +

(
a−
)T
e1,

eTmBem = eTmB
+em + eT1 B

−e1

which hold by definition of the operation ∗ in (2.5) and (2.6).

For (iii), consider d± in the orbit of [a+]⊕ [a−] under the action of Q〈µ〉,
that is, d+ = a+ + 2δem and d− = a− − 2δe1 for some δ ∈ Q. One has
d+ ∗ d− = a. A direct computation as in parts (i)-(ii) shows that

〈a+, a+〉+ 〈a−, a−〉 6= 〈d+, d+〉+ 〈d−, d−〉

hence � is not invariant under the action of Q〈µ〉. One can directly check
the invariance of the whole right-hand side of (6.1). This will also follow
from the proof of Theorem 6.1 below. �
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Proof of Theorem 6.1. On each side of the identity (6.1), the series is ob-
tained as a sum of contributions indexed by the representatives of the Spinc-
structure. First, we give a bijection between these representatives, and then
we argue that the corresponding contributions coincide.

The set of representatives of the Spinc-structure on the left-hand side is
a+ 2Q〈B1, . . . , Bs〉. Select such an element

` = a+ 2Bv for some v ∈ Qs.
On the right-hand side, the set of representatives of the Spinc-structure is
indexed by γ ∈ Q and representatives of the classes [b+] and [b−], that is,
the set of representatives is⋃
γ∈Q

(
a+ + 2γB+

m + 2Q〈B+
1 , . . . , B

+
m−1〉

)
×
(
a− + 2γB−1 + 2Q〈B−2 , . . . , B

−
n 〉
)
.

We assign to ` an element of this set as follows. Write v = (v1, . . . , vs), and
let γ := vm be the m-th coordinate of v. Define

v+ := (v1, . . . , vm−1, γ) , v− :=
(
γ, vm+1, . . . , v

−
s

)
.(6.5)

One has v = v+ ∗ v− − γem where em is the m-th standard basis element,
that is,

(6.6) v =
(
v+

1 , . . . , v
+
m−1, γ, v

−
2 , . . . , v

−
n

)
.

Define
`± := a± + 2B±v± ∈

[
b±
]
.

This gives a map ` 7→ (γ, `+, `−). One has ` = `+ ∗ `−. This follows from

`+ ∗ `− = a+ ∗ a− + 2B+v+ ∗B−v− = a+ 2Bv = `.

Vice versa, the map
(γ, `+, `−) 7→ ` := `+ ∗ `−

is clearly the desired inverse.
Next, we compare the exponents of q. Since ` = a+ 2Bv, one has

〈`, `〉 = 〈a, a〉+ 4〈a,Bv〉+ 4〈Bv,Bv〉
= 〈a, a〉+ 4aT v + 4vTBv.(6.7)

Similarly, since `± = a± + 2B±v±, one has

〈`±, `±〉 = 〈a±, a±〉+ 4
(
a±
)T
v± + 4

(
v±
)T
B±v±.

Since a = a+ ∗ a− and using (6.6), one directly verifies that

(6.8) aT v =
(
a+
)T
v+ +

(
a−
)T
v−.

Similarly, using (2.6), one has

(6.9) vTBv =
(
v+
)T
B+v+ +

(
v−
)T
B−v−.

Replacing (6.8) and (6.9) in (6.7) and simplifying, one obtains

〈`, `〉 = 〈a, a〉 − 〈a+, a+〉 − 〈a−, a−〉+ 〈`+, `+〉+ 〈`−, `−〉.
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Γ1

Γu

e .
.
.

0
∼=

Γ1

.

.

.

Γu

Figure 2. Neumann’s move (De,u).

This together with the fact that trB = trB+ + trB− implies that the
exponent of q for the contribution given by ` to the left-hand side matches
the exponent of q for the contribution given by (γ, `+, `−) to the right-
hand side.

The matching of the exponents of t is equivalent to the identity

ξ−1(`) = (ξ+)−1(`+) + (ξ−)−1(`−)

which follows from ` = `+ ∗ `− and the fact that ξ and ξ± all have equal
value at the vertex v0. The matching of the exponents of u follows similarly.

Finally, we compare the coefficients of the two sides. From the definition
(4.7), one has

Kξ(v0),δ0(z) = Kξ(v0),1+δ+
0

(z)Kξ(v0),1+δ−0
(z)

where δ±0 is the degree of v±0 in Γ± and δ0 = δ+
0 + δ−0 is the degree of v0 in

Γ. Since ` = `+ ∗ `−, one has `0 = `+0 + `−0 , where `0 is the component of `
corresponding to v0, and similarly `±0 is the component of `± corresponding
to v±0 . This implies

(6.10)
[
Kξ(v0),δ0(z)

]
`0

=
[
z−`

+
0 Kξ(v0),1+δ+

0
(z) z−`

−
0 Kξ(v0),1+δ−0

(z)
]

0
.

The contribution given by vertices v 6= v0 to the two sides equals∏
v 6=v0

[Kξv ,deg v(zv)]`v .

Multiplying this on both sides of (6.10) yields the equality of the coefficients

cΓ,ξ(`) =
[
cΓ+,ξ+,v0

(`+) cΓ−,ξ−,v0
(`−)

]
0

on the two sides of the identity, hence the statement. �

7. On the splitting move

Neumann showed that two plumbed 3-manifolds obtained from two forests
F1 and F2 admit an orientation-preserving diffeomorphism if and only if F1

and F2 are related by a sequence of the moves from Figure 1 together with
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the splitting move (De,u) in Figure 2 [Neu06]. There the weight e is an
arbitrary integer and u ≥ 1. For u ≥ 2, this move relates a tree with a
disjoint union of trees Γ1, . . . ,Γu.

For Q = A1, Ri showed that his (q, t)-series is not invariant under the
splitting move [Ri23]. Here, we make explicit how our (q, t)-series in the
case of arbitrary root lattices varies under the splitting move.

By Remark 7.2 at the end of this section, it is enough to consider the case
u = 2. Let Γ◦ be the plumbing tree on the left-hand side in Figure 2. We
show that the (q, t)-series for Γ◦ decomposes as a sum of product of certain
restrictions of the (q, t)-series for Γ1 and Γ2 times an additional (q, t)-series.

Let v0 and ve be the vertices of Γ◦ weighted by 0 and e, respectively. For
i ∈ {1, 2}, let vi∗ be the vertex of Γi incident to ve in Γ◦. The degree of vi∗
in Γ◦ is one more than its degree in Γi.

After possibly applying the Neumann move (A−) to Γ◦ along the edge
incident to ve and vi∗ and correspondingly the Neumann move (B−) to Γi,
we can assume without loss of generality that vi∗ has degree 1 in Γi and thus
degree 2 in Γ◦. Assume that Γ1 and Γ2 have invertible framing matrices.
Then necessarily Γ◦ has invertible framing matrix as well — see the following
(7.3). Also, assume that Γ◦, Γ1 and Γ2 are reduced.

Let τ◦ = (Q, a◦, ξ◦) be a tuple for Γ◦ as in (4.8). Write a◦ as

a◦ =
(
a◦0, a

◦
e, a

1
∗ − 2ρ, a1

] , a
2
∗ − 2ρ, a2

]

)
.

Here the entry a◦0 corresponds to v0, the entry a◦e to ve, the entries ai∗ − 2ρ
to vi∗, and the subtuple ai] to the remaining vertices of Γi. The map

a◦ 7→
(
a1, a2

)
with ai :=

(
ai∗, a

i
]

)
induces as isomorphism of the spaces of Spinc-structures

SpincQ (Γ◦)→ SpincQ (Γ1)× SpincQ (Γ2) [a◦] 7→
[(
a1, a2

)]
.

Next, we focus on the Weyl assignments. The Weyl assignment ξ◦ on Γ◦
uniquely determines Weyl assignments ξi on Γi such that ξ◦ and ξi have the
same values on the vertices of Γi other than vi∗ for i ∈ {1, 2}. Since vi∗ has
degree 2 in Γ◦, one has necessarily ξ◦(v

i
∗) = 1W . On the other hand, ξi(v

i
∗)

equals the value of ξi on the vertex incident to vi∗ in Γi by (3.1). Define
τi := (Q, ai, ξi) for i ∈ {1, 2}.

Next, for w ∈ W and a plumbing tree Γ whose vertices are ordered so
that the first vertex is a leaf, define a restricted (q, t)-series for Γ as

Ywτ (Γ; q, t) := (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉
∑
`∈Rw

cΓ,ξ(`) t
ξ−1(`) q−

1
8
〈`,`〉

where

Rw := (a+ 2BQs) ∩
(
{2w(ρ)} ×Qs−1

)
.

In other words, the series Ywτ (Γ; q, t) is obtained by restricting the sum in
the series Yτ (Γ; q, t) over only those ` ∈ a+ 2BQs whose first entry (which
corresponds to a leaf) is fixed equal to 2w(ρ).
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By definition, one has

Yτ (Γ; q, t) =
∑
w∈W

Ywτ (Γ; q, t) .

The various series Ywτ (Γ; q, t) are not separately invariant under the Neu-
mann moves from Figure 1. We use the restricted series in the following
statement about the splitting move:

Theorem 7.1. One has

Yτ◦ (Γ◦; q, t) =
∑
w∈W

Ywτ1 (Γ1; q, t)Ywτ2 (Γ2; q, t)∑
α∈Q

(−1)`(w)k(α) q−〈w(ρ),ρ+α〉 td

where

d := −2 (ξ◦(v0))−1 ξ◦(ve)w(ρ)− (2ρ+ 2α)

−2
(
ξ1

(
v1
∗
))−1

ξ◦(ve)w(ρ)− 2
(
ξ2

(
v2
∗
))−1

ξ◦(ve)w(ρ).

Proof. Let x := ξ◦(ve). After replacing w with x−1w and using the identities
`(x−1) = `(x) and 〈x−1w(ρ), 2ρ + 2α〉 = 〈w(ρ), x(2ρ + 2α)〉, the statement
is equivalent to

Yτ◦ (Γ◦; q, t) =
∑
w∈W

Ywτ1 (Γ1; q, t)Ywτ2 (Γ2; q, t)∑
α∈Q

(−1)`(xw) k(α) q−〈w(ρ),x(ρ+α)〉 td
′(7.1)

where

d′ := − 2 (ξ◦(v0))−1w(ρ)− (2ρ+ 2α)

− 2
(
ξ1

(
v1
∗
))−1

w(ρ)− 2
(
ξ2

(
v2
∗
))−1

w(ρ).
(7.2)

We prove this version of the statement.
Let B◦ be the plumbing matrix for Γ◦ and Bi for Γi with i ∈ {1, 2}. A

direct computation yields

π (B◦) = 1 + π (B1) + π (B2) ,

σ (B◦) = σ (B1) + σ (B2) ,

tr (B◦) = e+ tr (B1) + tr (B2) .

(7.3)

It follows that the factor in front of the sum in the series (4.12) for Γ◦ has
an extra factor with respect to the product of the analogous factors for Γ1

and Γ2 equal to

(7.4) (−1)|∆
+| q−

1
2
e〈ρ,ρ〉.

For i ∈ {1, 2}, the sum in the restricted (q, t)-series for Γi is indexed by
elements

`i =
(
2w(ρ), `i]

)
,
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where 2w(ρ) is the entry corresponding to vi∗, and `i] is the subtuple corre-
sponding to the other vertices of Γi.

For w ∈ W , α ∈ Q, and a pair of such `1 and `2, consider the tuple
indexing the sum in the (q, t)-series for Γ◦ given by

`◦ =
(
−2w(ρ),−x(2ρ+ 2α), 0, `1] , 0, `

2
]

)
.

Here the entry −2w(ρ) corresponds to v0, the entry −x(2ρ + 2α) to ve,
the entries 0 to vi∗, and the subtuple `i] to the remaining vertices of Γi.

Vice versa, the tuple `◦ uniquely determines
(
w,α, `1, `2

)
, hence one has a

bijection
`◦ ←→

(
w,α, `1, `2

)
.

In order to prove the statement, it suffices to verify that the contribution of
`◦ to the left-hand side of (7.1) equals the contribution of

(
w,α, `1, `2

)
to its

right-hand side. As the contribution to the left-hand side of (7.1) indexed
by an element ` not of type `◦ vanishes, i.e., cΓ◦,ξ◦(`) = 0 in this case, this
will conclude the proof.

First, we verify the exponents of q. Writing

B−1
1 =

 a11 . . . a1n
...

. . .
...

an1 . . . ann

 and B−1
2 =

 b11 . . . b1m
...

. . .
...

bm1 . . . bmm

 ,

a direct block matrix computation as in [Ri23, (5.4)] shows that

B−1
◦ =



a11 + b11 − e 1 −a11 . . . −a1n −b11 . . . −b1m
1 0 0 . . . 0 0 . . . 0
−a11 0 a11 . . . a1n 0 . . . 0

...
...

...
. . .

...
...

. . .
...

−an1 0 an1 . . . ann 0 . . . 0
−b11 0 0 . . . 0 b11 . . . b1m

...
...

...
. . .

...
...

. . .
...

−bm1 0 0 . . . 0 bm1 . . . bmm


.

This implies that

〈`◦, `◦〉 = 〈`1, `1〉+ 〈`2, `2〉 − 4e 〈ρ, ρ〉+ 4〈w(ρ), x(2ρ+ 2α)〉.
After multiplying by −1

8 and considering the power of q from (7.4), it follows
that the power of q contributed by `◦ to the left-hand side of (7.1) equals
the power of q contributed by

(
w,α, `1, `2

)
to its right-hand side.

Next, we verify the exponent of t. Starting from the left-hand side, the
entries of `◦ corresponding to v0 and ve contribute the following summand
to the exponent of t:

− 2 (ξ◦(v0))−1w(ρ)− (ξ◦(ve))
−1 x(2ρ+ 2α)

= −2 (ξ◦(v0))−1w(ρ)− (2ρ+ 2α).
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Since the entries of `◦ corresponding to v1
∗ and v2

∗ are zero, they do not
contribute to the exponent of t. On the right-hand side, since the entries
of `1 and `2 corresponding to v1

∗ and v2
∗ are equal to 2w(ρ), these entries

contribute the following summand to the exponent of t:

2
(
ξ1

(
v1
∗
))−1

w(ρ) + 2
(
ξ2

(
v2
∗
))−1

w(ρ).

Adding the contributions of the vertices of Γi other than vi∗ for i ∈ {1, 2}
and taking into account the exponent d′ from (7.2), it follows that the power
of t contributed by `◦ to the left-hand side of (7.1) equals the power of t
contributed by

(
w,α, `1, `2

)
to its right-hand side.

Finally, we verify the equality of the coefficients. Start from the coefficient
cΓ◦,ξ◦(`◦) computed as in (4.9). The entry of `◦ corresponding to v0 con-

tributes the factor (−1)`(ιw). A simple consequence of the Weyl denominator
formula yields

(−1)`(ιw) = (−1)|∆
+| (−1)`(w) for w ∈W

where ι is as in (3.2) — this indeed follows by comparing the coefficients of

z2ιw(ρ) on the two sides of (4.5). Moreover, since Kx,3(z) is as in (4.6), the

entry of `◦ corresponding to ve contributes the factor (−1)`(x) k(α). Multi-
plying these two quantities, we obtain that the entries of `◦ corresponding
to v0 and ve contribute the factor

(−1)|∆
+| (−1)`(xw) k(α).

The entries of `◦ corresponding to v1
∗ and v2

∗ are both zero and contribute
factors of 1. Correspondingly, the entry of `i equal to 2w(ρ) contributes the

factor (−1)`(w) to cΓi,ξi(`
i). Multiplying by the entries corresponding to the

vertices of Γi other than vi∗ for i ∈ {1, 2}, yields

(−1)|∆
+| cΓ◦,ξ◦(`

◦) = (−1)`(xw)k(α) cΓ1,ξ1(`1) cΓ2,ξ2(`2).

Taking into account the factor contributed by (7.4), it follows that `◦ con-
tributes the same (q, t)-monomial to the left-hand side of (7.1) as

(
w,α, `1, `2

)
to its right-hand side. Hence the statement. �

Remark 7.2. When u = 1, the Neumann move (De,u) follows from the other
five Neumann moves amongst trees. Indeed, when e = 0, the move (D0,1)
follows from move (C). When e > 0, the move (De,1) follows by applying
the moves (A−), (B−), and then (De−1,1). When e < 0, the move (De,1)
follows by applying the moves (A+), (B+), and then (De+1,1). Thus the
move (De,1) follows by induction on e.

Also, we remark that the case u ≥ 3 follows by induction on the case
u = 2 and the other Neumann moves amongst trees. Hence the emphasis
on the u = 2 case here.
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8. Examples

8.1. Lens spaces. Here we consider the case when M is the lens space
L(p, 1) for an integer p 6= 0. We can assume that Γ consists of a single

vertex weighted by p. Hence SpincQ (M) ∼= 2Q
2pQ . From the invariance in

Theorem 1(ii), we can assume that the Weyl assignment is ξ = (1W ).
For Q = A1 and |p| ≥ 3, there are exactly three Spinc-structures that

result in a non-zero (q, t)-series, namely:

Yτ (q, t) =



2σ q
1
4

(3σ−p) for a ≡ 0 mod 2p,

−σ q
1
4

(3σ−p)− 1
p t2 for a ≡ 2 mod 2p,

−σ q
1
4

(3σ−p)− 1
p t−2 for a ≡ −2 mod 2p,

0 otherwise.

Here σ = sign(p). For |p| ≤ 2, some of the above congruence classes coincide,
and thus the corresponding contributions add up.

8.2. Brieskorn spheres. Consider the case when M is a Brieskorn homol-
ogy sphere. After reviewing the q-series for this M and its independence
on ξ, we give a closed formula for the (q, t)-series and show how the latter
varies with ξ.

The plumbing tree Γ can be assumed to be a star graph with a vertex
of degree 3 and with a negative-definite plumbing matrix. Thus for a tuple
τ = (Q, a, ξ), the q-series Yτ (q) = Yτ (q, 1) exists. Since M is a homology
sphere, a = δ is the unique Spinc-structure on M .

Since Kx,n(z) in (4.7) does not depend on x for n ∈ {0, 1, 2}, it follows
that for a tuple τ = (Q, a, ξ), the q-series Yτ (q) depends on ξ at most up
to the value of ξ at the vertex of degree 3. Then applying the invariance in
Theorem 1(ii), we deduce that for a tuple τ = (Q, a, ξ), the q-series Yτ (q)

is in fact independent of ξ and thus equals the series Ẑ(q) computed in this
case for Q = A1 in [GM21] and for arbitrary Q in [Par20].

Specifically, select an order v0, v1, v2, v3, . . . of the vertex set of Γ so that
v0 is the vertex of degree 3 and v1, v2, v3 are the three vertices of degree 1.
A computation reviewed in [MT24, §6.1] shows that

Yτ (q) = q−
1
2

(3s+trB)〈ρ,ρ〉
∑
γ∈Q

w1,w2,w3∈W

(−1)`(w1w2w3)d (γ) q−
1
8
〈f,f〉

where

f = (γ, 2w1(ρ), 2w2(ρ), 2w3(ρ), 0, . . . , 0) ∈ Qs

with γ ∈ 2ρ+ 2Q and w1, w2, w3 ∈W

and

d (γ) := k

(
−1

2
γ − ρ

)
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−1

−2

−3 −7

Figure 3. The Brieskorn sphere Σ(2, 3, 7).

with k( ) equal to the Kostant partition function as in (4.3).
Next, we show how this computation can be refined to include the vari-

able t and how on the contrary the resulting (q, t)-series varies with ξ. For
a Weyl assignment ξ = (ξ0, ξ1, ξ2, ξ3, 1W , . . . , 1W ), the exponent of t as in
(4.10) is

e(ξ, f) := ξ−1
0 (γ) + 2 ξ−1

1 w1(ρ) + 2 ξ−1
2 w2(ρ) + 2 ξ−1

3 w3(ρ).

Then the (q, t)-series is

Yτ (q, t) = q−
1
2

(3s+trB)〈ρ,ρ〉
∑
γ∈Q

w1,w2,w3∈W

(−1)`(w1w2w3)d (γ) te(ξ,f) q−
1
8
〈f,f〉.

E.g., as Γ is negative definite, ξ = (1W , . . . , 1W ) satisfies the conditions of
a Weyl assignment. For this choice, the series Yτ (q, t) coincides with the

series ̂̂Z (q, t2) from [AJK23], computed for Brieskorn spheres in [LM23].
Since a is the unique Spinc-structure, the invariance in Theorem 1(ii)

implies that two Weyl assignments ξ and ξ′ conjugated by W (i.e., ξ′ = w(ξ)
for some w ∈W ) yield the same series Yτ (q, t). However, when ξ and ξ′ are
not conjugated by W , the resulting series Yτ (q, t) are in general distinct,
although equal at t = 1.

8.3. The Brieskorn sphere Σ(2, 3, 7). As a special case of §8.2, consider
M = Σ(2, 3, 7). This is obtained from the negative-definite plumbing tree
in Figure 3. For Q = A1 and ξ = (1W , 1W , 1W , 1W ), one has

Yτ (q, t) = q1/2
(
t2 − q − q5 + q10 t−2 − q11 + q18 t−2 + q30 t−2 − q41 t−4

+q43 − q56 t−2 − q76 t−2 + q93 t−4 +O(q96)
)
.

Here O(qx) stands for qx times a series in non-negative powers of q. This

series matches the computations of ̂̂Z (q, t2) in [LM23].
Still for Q = A1, the input ξ = (ι, ι, ι, ι) yields the same series, as per

Theorem 1(ii). However, the input ξ = (ι, 1W , 1W , 1W ) yields a distinct
series:

Yτ (q, t) = q1/2
(
t−4 − q t−2 − q5 t−2 + q10 − q11 t−2 + q18 + q30 − q41 t2

+q43 t−6 − q56 t−4 − q76 t−4 + q93 t2 +O(q96)
)
.
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Overall, there are 8 non-conjugated Weyl assignments for W = S2 that yield
8 distinct series.

For Q = A2 and ξ = (1W , . . . , 1W ), one has

Yτ (q, t) = q2 t41 t
4
2 − q3

(
t41 t

2
2 + t21 t

4
2

)
+ q5

(
t21 + t22

)
+ q6(2 t21 t

2
2 − 1)

−q7
(
t41 t

2
2 + t21 t

4
2

)
− 2q10 + 4q11 t21 t

2
2 + q12

(
t41 + t42

)
−q13

(
t21 + t22 + t41 t

2
2 + t21 t

4
2

)
+ q15

(
t−2
1 + t−2

2

)
−q16

(
2 + t21 + t22 + t21 t

−2
2 + t−2

1 t22
)

+O(q17).

Specializing at t1 = t2 = 1 recovers the q-series from [Par20].
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