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Abstract. We study formal series which are invariants of plumbed 3-
manifolds twisted by root lattices. These series extend the BPS q-series

Ẑ(q) recently defined in Gukov-Pei-Putrov-Vafa, Gukov-Manolescu, Park,

and further refined in Ri. We show that the series Ẑ(q) is unique in an
appropriate sense and decomposes as the average of related series which
are themselves invariant under the five Neumann moves amongst plumb-
ing trees. Explicit computations are presented in the case of Brieskorn
spheres and a non-Seifert manifold.

Introduction

An ongoing pursuit in quantum topology revolves around the categori-
fication of Witten-Reshetikhin-Turaev (WRT) invariants for links and 3-
manifolds. Recent progress has been made through a physical definition
of a new invariant series for 3-manifolds in Gukov-Pei-Putrov-Vafa [GPPV]

and Gukov-Manolescu [GM]. This series, usually denoted as Ẑa(q), requires
the choice of a Spinc-structure a on the 3-manifolds. It is expected to arise
as the Euler characteristic of a homology theory currently lacking a math-
ematical definition and is expected to converge to the WRT invariants in

some appropriate limits [GPV, GPPV]. A mathematical definition of Ẑa(q)
is currently available only for negative-definite plumbed 3-manifolds [GM],
and in this case the convergence to the WRT invariants has been recently

proven in Murakami [Mur]. The series Ẑa(q) has been refined to include
the datum of an arbitrary root lattice by Park [Par], with the series from
[GPPV, GM] coinciding with the A1 case.

Here we show that Ẑa(q) is unique in an appropriate sense and decomposes
as the average of related series which are themselves invariant. For this, we
start by constructing a general series starting from an initial input which
includes the data used in [Par]. Namely we start from a reduced and refinable
plumbing tree Γ (reviewed in §§1.7 and 1.4), a root lattice Q, and a choice
of a generalized Spinc-structure a (which depends on the root lattice as
reviewed in §1.6). Moreover, we consider ancillary inputs given by a choice
of a collection P of formal series and a set S of assignments of elements of
the Weyl group to the vertex set of Γ. We denote our resulting series as
Y (q) = YP,S,a (q) (with Γ and Q omitted from the notation).

Theorem 1. For a reduced and refinable plumbing tree Γ, a root lattice Q,
and a generalized Spinc-structure a, there exists a unique finite collection of
formal series of type Y(q) that are invariant under the five Neumann moves

amongst reduced plumbing trees, with only one such series Y(q) = Ẑa(q)
invariant under the action of the Weyl group W .

MSC2020. 57K31 (primary), 57K16, 17B22 (secondary).
Key words and phrases. Quantum invariants of 3-manifolds, plumbed 3-manifolds, root

systems, Kostant partition functions, Spinc-structures, false theta functions.
1



2 A.H. MOORE AND N. TARASCA

The series YP,S,a (q) recovers the series Ẑa(q) when P is what we call
the Kostant collection induced from the Kostant partition function of Q
as in §2.2 and S = Ξ ⊆ W V (Γ) is the set defined in §3.1. We find the
decomposition

Ẑa(q) =
1

|Ξ|
∑
ξ∈Ξ

YK,ξ,a (q)

with each series YK,ξ,a (q) invariant under the five Neumann moves amongst
reduced plumbing trees but not necessarily under the action of W . For
Q = A1, the action of W is the usual conjugation of Spinc-structures.

Our quest was initially inspired by Akhmechet-Johnson-Krushkal [AJK],
who show that for the class of negative-definite plumbing trees and Q = A1,

the series Ẑa(q) fits in an infinite family of invariant series. As any two
negative-definite plumbing tree presentations for a 3-manifold are related
via a series of two Neumann moves (§1.5), proving invariance is equivalent
to checking invariance under the two Neumann moves. Moreover, the series

Ẑa(q) is invariant with respect to conjugation of Spinc-structures. For an
arbitrary series, the invariance under the two Neumann moves and under
the conjugation of Spinc-structures imposes certain constraints on the series
coefficients. It is shown in [AJK] that there are infinitely many solutions

to such constraints, with the series Ẑa(q) giving only one such example.
Explicit computations in the case of Brieskorn spheres are presented in [LM].

In pursuit of constructing invariants for more general 3-manifolds, it is
desirable to consider inputs from a larger class of plumbing graphs. When
considering more generally the case of arbitrary plumbing trees, any two
plumbing tree presentations are related via a series of five Neumann moves,
with three extra moves complementing the two moves from the negative-

definite case. While the series Ẑa(q) (more precisely, a specific refinement
presented for Q = A1 in [Ri]) remains invariant (when it is well-defined,
i.e., the plumbing tree is refinable as in §1.4) [GM, Par], it is natural to ask

whether Ẑa(q) is unique in this regard. In other words, we ask how many

of the modifications of Ẑa(q) à la [AJK] satisfy the constraints given by the
five Neumann moves and the action of the Weyl group on generalized Spinc-
structures and thus remain invariant more generally for plumbing trees.

The answer to this question requires a study of the collections P used as
input. Two key properties for such P emerge, referred to as admissibility
and symmetry. We show that:

Theorem 2. For a root lattice Q:

(i) There are only finitely many admissible collections, explicitly given
in (2.11).

(ii) The Kostant collection is the unique admissible and symmetric col-
lection, up to the action of the Weyl group W (2.7).

Finally, we show that the invariance of the series Y(q) under the five Neu-
mann moves is equivalent to P being admissible and S ⊆ Ξ. Additionally,
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the invariance of the series Y(q) also under the action of W is equivalent to
P being admissible and symmetric and S = Ξ (see Theorem 5.1). Thus we
deduce Theorem 1 from Theorem 2. Explicitly, we prove:

Theorem 3. For a reduced and refinable plumbing tree Γ, a root lattice
Q, and a generalized Spinc-structure a, the unique finite collection of formal
series of type Y(q) that are invariant under the five Neumann moves amongst
reduced plumbing trees consists of the series

YS,a (q) :=
1

|S|
∑
ξ∈S

YK,ξ,a (q) for S ⊆ Ξ

with YΞ,a (q) = Ẑa(q).
If a series YS,a (q) for some S ⊆ Ξ is also invariant under the action of

the Weyl group, then YS,a (q) = Ẑa(q).

Explicit computations in the case of Brieskorn spheres and a non-Seifert
manifold are presented in §6. In the former case, we show that the series

YP,S,a (q) for all S ⊆ Ξ are identical and equal to Ẑa(q) for all root lattices,

while in the latter case we show that the series Ẑ(q) for Q = A1 decomposes
as the average of two distinct invariant series of type Y (q).

We will present analogous results for plumbed knot complements and a
gluing formula in the forthcoming [MT]. Additionally, we will show there
how to remove the assumption that Γ be refinable, at the expense of intro-
ducing the dependence of the series on a new variable.

Structure of the paper. Root lattices, plumbings, Neumann moves, and
Spinc-structures are reviewed in §1. We define and study the admissible
collections P in §2 and prove Theorem 2 there. The series Y (q) is defined
in §3. For an admissible P and S ⊆ Ξ, the invariance of Y (q) is proved
in §4. The proof of Theorems 1 and 3 is in §5. Explicit computations are
presented in §6.

1. Notation and background

Here we review the necessary background on root lattices, plumbed 3-
manifolds and their homology, Neumann moves, reduced plumbing trees,
and generalized Spinc-structures.

1.1. Root lattices. We start by reviewing some basic facts on root lattices
that will be used throughout; we refer to [Bou, Hum] for more details.

A root system is a pair (V,∆) where V is a finite-dimensional Euclidean
space over R with a positive-definite bilinear form 〈, 〉, and ∆ ⊂ V is a finite
subset of non-zero vectors, called roots, such that:

(i) R∆ = V ;
(ii) for α ∈ ∆, one has nα ∈ ∆ if and only if n = ±1;
(iii) ∆ is closed under the reflections through the hyperplanes orthogonal

to the roots; and
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(iv) for α, β ∈ ∆, one has 2 〈α,β〉〈α,α〉 ∈ Z.

Let Q be a root lattice, that is, Q = Z∆ for some root system (V,∆). We
will denote its rank as r := rank(Q). The corresponding weight lattice P is
defined as

P :=

{
λ ∈ V

∣∣∣∣∣ 2
〈λ, α〉
〈α, α〉

∈ Z for α ∈ ∆

}
.

Select a set ∆+ ⊂ ∆ of positive roots. This is the set of all roots lying
on a fixed side of a hyperplane in V which does not contain any root. The
Weyl vector ρ ∈ P ∩ 1

2Q is defined as the half-sum of the positive roots.
A root α ∈ ∆+ is simple if α cannot be written as the sum of two elements

in ∆+. Simple roots form a basis for V . For simple roots α1, . . . , αr, the

fundamental weights λ1, . . . , λr are elements of P such that 2
〈λi,αj〉
〈αj ,αj〉 = δi,j

for i, j = 1, . . . , r. These also form a basis of V .
Let W be the Weyl group acting on Q. This is the group generated by

reflections through the hyperplanes orthogonal to the roots. For w ∈ W ,
the length `(w) of w is defined as the minimum length of any expression of
w as product of such reflections. This is also equal to the number of positive
roots transformed by w into negative roots.

Root lattices are classified by Dynkin diagrams. As an example, the root
lattice Q = A1 is Z with bilinear form 〈m,n〉 = 2mn for m,n ∈ Z. In this
case, ρ = 1

2 and W = S2 (the symmetric group on a set of size 2).
More generally, it will be convenient to have the following example in

mind. The root lattice Q = A2 is Zα ⊕ Zβ with 〈α, α〉 = 〈β, β〉 = 2 and
〈α, β〉 = −1. In particular, the angle between α and β is 120◦, and Q is
the vertex arrangement of the tiling of the Euclidean plane by equilateral
triangles. In this case, ∆ = {±α,±β,±(α + β)} and W = S3. For the set
of positive roots ∆+ = {α, β, α+ β}, the Weyl vector is ρ = α+ β.

1.2. Plumbings. We will consider closed oriented 3-manifolds that arise
from the plumbing construction. Here we sketch the construction and set
the notation; we refer to [Neu1] and [Ném, §3.3] for details.

One starts from a plumbing graph Γ. This consists of a graph with some
decorations: for each vertex, one has two integer numbers (called the Euler
number and the genus of the vertex), and for each edge, one has a sign.
We assume throughout that Γ is a tree and that the genus of each vertex is
zero. Since Γ has no cycles, one can assume that the sign on all edges is +1
[Neu1] (but it will be beneficial to remember that edge signs can change; we
will return to this in §§1.5-1.6). Hence, for our plumbing trees we will only
record the Euler number mv for each vertex v.

For a plumbing tree Γ, let V (Γ) be its vertex set and E(Γ) its edge
set. Choose an ordering of its vertices v1, . . . , vs, with s = |V (Γ)|, and let
m1, . . . ,ms be the corresponding Euler numbers. An edge between vertices
vi and vj will be denoted by (i, j) ∈ E(Γ).
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The framing matrix B determined by Γ is the s× s symmetric matrix

B := (Bij)
s
i,j=1 with Bij :=


mi if i = j,

1 if i 6= j and (i, j) ∈ E(Γ),

0 otherwise.

(More generally, the entries Bij corresponding to the edges are defined to
be equal to the edge signs.) We denote by σ = σ(B) the signature of B and
π = π(B) the number of its positive eigenvalues. One has σ = 2π − s.

For the plumbing construction, one starts by assigning to each vertex v of
Γ an oriented disk bundle over a real surface Ev of genus equal to the genus
decoration of v (i.e., genus 0 in our case), with the Euler number of the
bundle equal to mv. Then one constructs a 4-manifold X = X(Γ) by gluing
together such bundles according to the edge set E(Γ). Let M = M(Γ)
be the boundary of X. This is a closed oriented 3-manifold, called the
plumbed 3-manifold constructed from Γ. Alternatively, M may be obtained
by Dehn surgery on a framed link determined by Γ consisting of unknots
corresponding to the vertices of Γ, framings given by the corresponding
Euler numbers, and with two unknots forming an Hopf link whenever the
corresponding vertices in Γ are joined by an edge.

1.3. On the homology of the plumbed 3-manifold. The 4-manifold X
has the same homotopy type of the space E of the s real surfaces Ev, i.e.,
Hi (X;Z) ∼= Hi (E;Z) for i ≥ 0. The homology of the 3-manifold M follows
from Lefshetz duality, the Universal Coefficient Theorem, and the long exact
sequence of the pair (X,M).

Specifically, let

L := H2 (X;Z) ∼= H2 (E;Z) ∼= Zs.

The last isomorphism is induced from the choice of an ordering of the real
surfaces Ev (or equivalently, the vertices of Γ). The natural intersection
pairing of L ∼= Zs is given by the framing matrix B.

By Lefshetz duality and the Universal Coefficient Theorem, the dual of
the lattice L is

L′ = H2 (X;Z) ∼= H2 (X,M ;Z) ∼= Zs.

This is generated by the transversal disks Dv to the surfaces Ev at general
points. Hence, the natural map L → L′ in the bases {Ev}v and {Dv}v is
given by the framing matrix B.

In the following, we assume that the pairing of L is non-degenerate, i.e.,
det(B) 6= 0. In this case, one has an inclusion of lattices B : L ↪→ L′.
From the long exact sequence of the pair (X,M), the boundary operator
L′ ∼= H2 (X,M ;Z)→ H1 (M ;Z) yields a short exact sequence

L′/L ↪→ H1 (M ;Z) � H1 (X;Z) .
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From the assumption that Γ is a tree and that all surfaces Ev have genus 0,
we deduce the vanishing H1 (X;Z) ∼= H1 (E;Z) ∼= 0. Hence, one has

H1 (M ;Z) ∼= L′/L ∼= Zs/BZs.

In particular, our assumptions imply that M is a rational homology sphere,
i.e., H1 (M ;Q) = 0.

When det(B) 6= 0, the framing matrix B is invertible over Q, and the
induced bilinear pairing on L′ is

〈, 〉 : L′ × L′ → Q, (v, w) 7→ vtB−1w.

This pairing is induced from B since for x, y ∈ L, one has 〈Bx,By〉 = xtBy,
thus recovering the pairing of x and y in L.

For a root lattice Q and a lattice L′ as above, the induced bilinear pairing
on L′ ⊗Z Q is defined by

〈, 〉 : L′ ⊗Z Q× L′ ⊗Z Q→ Q, (v ⊗ α,w ⊗ β) 7→ 〈v, w〉 〈α, β〉.

Here the pairing 〈v, w〉 is in L′ and the pairing 〈α, β〉 is in Q. This extends
by linearity as follows. For a, b ∈ L′ ⊗Z Q ∼= Zs ⊗Z Q, write a = (a1, . . . , as)
and b = (b1, . . . , bs), with ai, bi ∈ Q, for i = 1, . . . , s. Then the pairing is

(1.1) 〈a, b〉 =
s∑
i=1

s∑
j=1

(
B−1

)
ij
〈ai, bj〉.

1.4. Refinable plumbings. A plumbing tree Γ is negative definite if the
framing matrix B is negative definite.

A plumbing tree Γ is weakly negative definite if the framing matrix B is
invertible over Q and B−1 is negative definite on the subspace of Zs spanned
by the vertices of Γ of degree at least 3. If Γ has no vertex of degree at least
3, then one simply requires that B be invertible over Q.

A plumbed 3-manifold M is negative definite (respectively, weakly nega-
tive definite) if M may be constructed from some negative-definite (resp.,
weakly negative-definite) plumbing tree, up to an orientation preserving
homeomorphism.

One defines a plumbing tree or a plumbed 3-manifold to be weakly positive
definite similarly.

We say that a plumbing tree Γ is refinable if up to Neumann moves, Γ is
either weakly negative definite or weakly positive definite.

It was observed in [GKS, Footnote 8] that all weakly negative-definite
plumbed 3-manifolds are in fact negative definite, that is, every weakly
negative-definite plumbing tree can be transformed into a negative definite
one by a sequence of Neumann moves. In particular, all such 3-manifolds
arise as links of isolated singularities on complex normal surfaces, up to an
orientation preserving homeomorphism.
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m1 + ε1 m2 + ε1ε1

'

m1 m2

(Aε)

m1 + ε1 ε1

'

m1

(Bε)

m1 m20

'
m1 +m2

(C)

Figure 1. The five Neumann moves on plumbing trees.
Here, ε ∈ {+,−}.

1.5. Neumann moves. Here we review the Neumann moves on plumbing
trees. These moves (and their inverses) are depicted in Figure 1. Each
move is between two plumbing trees and represents an orientation preserving
homeomorphism between the corresponding plumbed 3-manifolds.

Neumann showed more generally than any orientation preserving home-
omorphism between two arbitrary plumbed 3-manifolds decomposes as a
sequence of moves between their plumbing graphs [Neu1, Thm 3.2]. The
five moves from Figure 1 are the only ones between plumbing trees.

Note that the moves (A−) and (B−) from Figure 1 preserve the negative-
definite property of the plumbing trees. However, the other three Neumann
moves from Figure 1 do not necessarily preserve the weakly negative-definite
property of the plumbing trees, see [Ri, Ex. 4.2]. In particular, a plumbing
tree for a weakly negative-definite plumbed 3-manifold may not necessarily
be weakly negative definite, but it may become so after a sequence of the
Neumann moves from Figure 1.

We emphasize that orientation preserving homeomorphisms between pairs
consisting of a plumbed 3-manifold and a (generalized) Spinc-structure have
not been classified yet, see [AJP, Appendix A]. Also, while orientation pre-
serving homeomorphisms between 3-manifolds constructed from plumbing
forests are classified in [Neu2], no such result is known when one reduces to
plumbing trees alone. We will content ourselves with verifying invariance
under the Neumann moves from Figure 1 and the action of the Weyl group.

Remark 1.1. For each move, we will use the following observation about
the framing matrices. Let Γ and Γ◦ be the bottom and top plumbing trees,
respectively, and let B and B◦ be the corresponding framing matrices. A
direct computation shows that the column space of B is isomorphic to a
subspace of the column space of B◦. We show this in the case of move
(A+), with the case of the other moves being similar. Assume first that Γ
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has only two vertices. Then B and B◦ are

B =

(
m1 1
1 m2

)
and B◦ =

 m1 + 1 1 0
1 1 −1
0 −1 m2 + 1

 .

After a column operation, B◦ becomes m1 1 1
0 1 0
1 −1 m2


from which it is clear that the column space of B is isomorphic to a subspace
of the column space of B◦. Note that the negative edge signs appearing as
the two coefficients −1 of B◦ can be undone after changing the orientation
of the subspace spanned by the vertex labelled by m2. Indeed, this entails
multiplying by −1 the last row and last column of B◦. For the case when Γ
has more vertices, a similar block form argument applies.

1.6. Generalized Spinc-structures. Here we review the space of general-
ized Spinc-structures for a plumbed 3-manifold M and a root lattice Q. This
space appeared in [Par]. A generalized Spinc-structure will be an input of
the q-series defined in §3.

Recall from §1.3 that the choice of an ordering of the vertices of Γ induces
an isomorphism L′ ∼= Zs. Let

TE := (2− deg(v1), . . . , 2− deg(vs)) ∈ Zs ∼= L′

and

(1.2) δ := TE ⊗ 2ρ ∈ L′ ⊗Z Q

where ρ is the Weyl vector as in §1.1.
The space of generalized Spinc-structures on M for the root lattice Q is

(1.3) BQ(M) :=
δ + 2L′ ⊗Z Q

2BL⊗Z Q
.

For Q = A1, this is simply

Spinc(M) ∼=
δ + 2L′

2BL
,

the space of Spinc-structures on M [Ném, §6.10]. Thus BQ(M) generalizes
the space of Spinc-structures for an arbitrary root lattice Q. As for the case
Q = A1, the space BQ(M) is affinely isomorphic to

(1.4) H1(M ;Q) ∼=
L′ ⊗Z Q

BL⊗Z Q
.

The Weyl group W naturally acts component-wise on L′ ⊗Z Q, and this
induces an action of W on BQ(M):

w : BQ(M)→ BQ(M), [a] 7→ [w(a)], for w ∈W.
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Proposition 1.2. For a plumbed 3-manifold M and a root lattice Q, the set
BQ(M) and the Weyl group action on it are invariant under the Neumann
moves in Figure 1.

Proposition 1.2 follows from the next Proposition 1.4. This will be used
in the proof of Theorem 3.3.

To prove Proposition 1.2, it is enough to verify that BQ(M) and the Weyl
group action on it are invariant under the Neumann moves from Figure 1.
For each move, we use the notation B : L ↪→ L′ and δ defined as above for the
terms related to the bottom plumbing tree Γ, and the notation B◦ : L◦ ↪→ L′◦
and δ◦ for the corresponding terms related to the top plumbing tree Γ◦.

For each move, we define a function

R : L′ ⊗Z Q→ L′◦ ⊗Z Q, a 7→ R(a)

such that the induced map

(1.5)
δ + 2L′ ⊗Z Q

2BL⊗Z Q
−→ δ◦ + 2L′◦ ⊗Z Q

2B◦L◦ ⊗Z Q
, [a] 7→ [R(a)]

is a bijection of sets and is equivariant with respect to the action of the Weyl
group W . Note that for each move, the column space of B is isomorphic
to a subspace of the column space of B◦, see Remark 1.1. It follows that
for each representative a of a generalized Spinc-structure for Γ, there is a
corresponding affine space of generalized Spinc-structures for Γ◦, and R(a)
is required to be in such a space.

We proceed by defining the function R for each move. For this, we first
choose an order of the vertices of Γ and a compatible order of the vertices
of Γ◦. This induces isomorphisms L′ ∼= Zs and L′◦

∼= Zs◦ , where s and s◦
are the ranks of L′ and L′◦, respectively.

Remark 1.3. The choice of an order of the vertices of Γ and a compatible
order of the vertices of Γ◦ allows one to distinguish for each Neumann move
the parts of the tree that are on the left and on the right of each vertex.

Consider the Neumann move (Aε) from Figure 1 with ε ∈ {+,−}. For
a ∈ L′ ⊗Z Q, write a = (a1, a2) with subtuple a1 corresponding to the
vertices of Γ consisting of the vertex labeled by m1 and all vertices on its
left, and subtuple a2 corresponding to the vertices of Γ consisting of the
vertex labeled by m2 and all vertices on its right. Define

(1.6) R : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a1, a2) 7→ (a1, 0,−εa2)

with the 0 entry corresponding to the added vertex in Γ◦. Recall from
§1.3 that all edges of plumbing graphs have a sign, which determines the
corresponding gluing, and in the case of plumbing trees one can assume
that all edge signs are equal [Neu1]. When ε = +, the Neumann move (A+)
involves the change of an edge sign of Γ◦. This change of the edge sign
can be undone after changing the orientation of the subspace of L′ ⊗Z Q
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corresponding to one side of the added vertex in Γ◦. Thus the minus sign
multiplying a2 in the formula for R.

Next, consider the Neumann move from Figure 1(Bε) with ε ∈ {+,−}.
For a ∈ L′⊗ZQ, write a = (a], a1) with entry a1 corresponding to the vertex
of Γ labeled by m1, and subtuple a] corresponding to all other vertices of Γ.
Define

(1.7) R : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a], a1) 7→ (a], a1 + 2ρ, ε2ρ)

where the entry ε2ρ corresponds to the added vertex in Γ◦.

Finally, consider the Neumann move (C) from Figure 1. Let v0 be the
vertex in Γ labeled by m1 +m2, and let v1, v′0, and v2 be the vertices in Γ◦
labeled by m1, 0, and m2, respectively. For a ∈ L′⊗ZQ, write a = (a], a0, a[)
with entry a0 corresponding to the vertex v0 in Γ, subtuple a] corresponding
to all vertices in Γ equivalent to the vertices of Γ◦ on the left of v1, and
subtuple a[ corresponding to all vertices in Γ equivalent to the vertices of
Γ◦ on the right of v2. For β ∈ Q, define

(1.8) R = Rβ : L′⊗ZQ→ L′◦⊗ZQ, (a], a0, a[) 7→ (a], a0 +β, 0, β,−a[)
where the entries a0 + β, 0, and β correspond to the vertices v1, v′0, and v2

in Γ◦, respectively. Assume that β is chosen as follows

(1.9) β =

{
2ρ if deg(v1) ≡ deg(v2) mod 2,

0 otherwise.

This choice of β will allow one to verify (1.10).

Proposition 1.4. For each Neumann move in Figure 1, the map R as
defined in (1.6)–(1.9) induces a bijection of the sets BQ(M) as in (1.5).

The induced bijection is equivariant with respect to changes of the order
of the vertices of the plumbing trees and the action of the Weyl group.

Proof. For each Neumann move in Figure 1, it is immediate to verify that
R is injective. Moreover, one has

(1.10) R
(
δ + 2L′ ⊗Z Q

)
⊆ δ◦ + 2L′◦ ⊗Z Q.

For instance, let us verify this for the Neumann move (C). Select

` ∈ δ + 2L′ ⊗Z Q, and write ` = (`], `0, `[).

This implies `0 ∈ (2− deg v0)2ρ+ 2Q. Then in order to have

Rβ(`) = (`], `0 + β, 0, β,−`[) ∈ δ◦ + 2L′◦ ⊗Z Q,

one needs

`0 + β ∈ (2− deg v1)2ρ+ 2Q and β ∈ (2− deg v2)2ρ+ 2Q.

One has deg v0 ≡ deg v1 mod 2 if and only if deg v1 6≡ deg v2 mod 2. Hence
both of these conditions are implied by the choice of β in (1.9).

The induced map (1.5) is thus well-defined and injective. Recall that the
column space of B is isomorphic to a subspace of the column space of B◦,
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see Remark 1.1. Hence the surjectivity of the induced map (1.5) follows by
a direct analysis of the extra column space of B◦. Finally, the equivariance
with respect to changes of the order of the vertices of the plumbing trees
and the action of the Weyl group follows immediately. �

1.7. Reduced plumbing trees. We will use reduced plumbing trees as in
[Ri]. These are defined as follows. Let Γ be a plumbing tree. First, define
a branch of Γ to be a path in Γ connecting a vertex of degree at least three
to a vertex of degree one through a sequence of degree-2 vertices. Define a
branch to be contractible if the branch can be contracted down to a single
vertex by a sequence of the Neumann moves from Figure 1.

A vertex v of Γ is defined to be reducible if v has degree at least 3 but,
after contracting all contractible branches incident to v, the degree of v
drops down to 1 or 2.

Finally, define Γ to be reduced if Γ has no reducible vertices. Any plumb-
ing tree can be reduced via a sequence of the Neumann moves from Figure
1. Note that reducing a reducible vertex to a vertex of degree 1 or 2 via a
sequence of Neumann moves may yield a new reducible vertex. For this, the
tree Γ becomes reduced after repeatedly reducing all reducible vertices via a
sequence of Neumann moves. Moreover, one has:

Lemma 1.5. By removing contractible branches, a weakly negative-definite
plumbing tree becomes reduced while remaining weakly negative definite.

Proof. We argue that contracting a branch preserves the property of being
weakly negative definite. A branch may be contracted by a sequence of the
Neumann moves from Figure 1 of type (A±), (B±), and those moves of
type (C) where at most one of the two vertices labelled by m1 and m2 has
degree at least 3. (Moves of type (C) where the two vertices labelled by m1

and m2 have both degree at least 3 are not necessary to contract branches.
In fact, these moves do not necessarily preserve the weakly negative-definite
property of the plumbing trees, see [Ri, Ex. 4.2]. Hence we avoid using them
in this argument.)

For each one of these Neumann moves, let Γ and Γ◦ be the bottom and
top plumbing graphs, respectively. We argue that if one of them is weakly
negative definite, so is the other one. As in §1.6, let B and B◦ be the
framing matrices of Γ and Γ◦, respectively, and let s and s◦ be their ranks,
respectively. Let H ⊂ Qs and H◦ ⊂ Qs◦ be the subspaces spanned by the
vertices of degree ≥ 3 in Γ and Γ◦, respectively. If the Neumann move under
consideration reduces a reducible vertex to a vertex of degree 1 or 2 in Γ,
then quotient H◦ by the linear subspace corresponding to that reducible
vertex of degree 3 in Γ◦, and denote this quotient still by H◦. Thus we may
assume that H and H◦ have the same rank.

We proceed to construct a map R : Qs → Qs◦ which induces a linear
isomorphism H ∼= H◦. For the moves (A±), consider the map R from (1.6);
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for the moves (B±), consider the map

R : Qs → Qs+1, (a], a1) 7→ (a], a1, 0)

with notation as in (1.7); and for the move (C), consider the map R = Rβ
from (1.8) with β = 0. It is immediate to see that for each move, the map
R so defined induces an isomorphism H ∼= H◦.

Moreover, for each ` ∈ H, a direct computation shows that 〈`, `〉 =
〈R(`), R(`)〉, with the pairings defined by the matrices B−1 and B−1

◦ as
in (1.1), respectively. For moves (A±) and (C), this is a special case of a
more general computation later done in (4.2), (4.7), (4.21); the case of moves
(B±) follows similarly. Hence the statement. �

We will use a result from [Ri] showing that two reduced plumbing trees
are related by a sequence of the Neumann moves from Figure 1 if and only
if they are related by a sequence of those Neumann moves from Figure 1
which do not create any reducible vertices [Ri, Prop. 3.4].

2. Admissible collections

Here we define and study admissible collections. These will be used to
construct invariant series in §3. We end the section with the proof of Theo-
rem 2.

Let ι ∈W be the element defined by

(2.1) ι(α) = −α for all α ∈ Q.

We will apply the Weyl denominator formula

(2.2)
∑
w∈W

(−1)`(w) z2w(ρ) =
∏
α∈∆+

(
zα − z−α

)
,

and a simple consequence of it:

Lemma 2.1. One has `(ι) ≡ |∆+| mod 2. Equivalently, one has

(−1)`(ιw) = (−1)|∆
+|(−1)`(w) for w ∈W .

Proof. The statement follows by comparing the coefficients of z2ιw(ρ) on the
two sides of the Weyl denominator formula (2.2). �

2.1. Admissible collections. For a root lattice Q, consider a formal series

(2.3) P (z) :=
∑
α∈Q

c(α)zα

with coefficients c(α) in a commutative ring R. Here zα for α ∈ Q (or more
generally, α in the weight lattice) is a multi-index monomial. By linearity,
it is enough to assume that α is a root, and in this case, zα is defined as

(2.4) zα :=

r∏
i=1

z
〈α∨,λi〉
i
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with α∨ := 2
〈α,α〉α being the coroot of α and λ1, . . . , λr being the fundamen-

tal weights. Hence P (z) ∈ R
q
z±1

1 , . . . , z±1
r

y
, the R-module of formal series

in variables z1, . . . , zr.
We will consider a collection of such series indexed by elements of W and

non-negative integers:

(2.5) P =

Px,n(z) =
∑
α∈Q

cx,n(α)zα ∈ R
q
z±1

1 , . . . , z±1
r

y
∣∣∣∣∣ x ∈W, n ≥ 0


such that for n = 1, one has

(2.6) Px,1(z) =
∑
w∈W

(−1)`(w) z2w(ρ).

In particular, Px,1(z) is independent of x. There is a natural action of W
on such collections:

(2.7) w (Px,n(z))x,n = (Pwx,n(z))x,n for w ∈W.

We identify two collections if they are in the same orbit under W .

Definition 2.2. A collection of series P as in (2.5) is admissible if it satisfies
the following four properties:

(P1) One has Px,2(z) = 1 for all x ∈W .

(P2) For all x ∈W and n ≥ 1, one has

Px,n−1(z) =

(∑
w∈W

(−1)`(w) z2w(ρ)

)
Px,n(z).

Equivalenty,

(−1)|∆
+|
∑
w∈W

(−1)`(w) cx,n (α+ 2w(ρ)) = cx,n−1(α) for α ∈ Q.

The equivalence of the two conditions is due to Lemma 2.1 and the
fact that for each w ∈ W , the coefficient of zα in z2ιw(ρ)Px,n(z) is

equal to the coefficient of zα+2w(ρ) in Px,n(z) (since w(ρ)+ ιw(ρ) = 0
in Q).

(P3) For x ∈W and n ≥ 0, the involution x 7→ ιx yields

[Px,n(z)]α = (−1)|∆
+|n [Pιx,n(z)]−α for α ∈ Q.

Equivalently, one has

cx,n(α) = (−1)|∆
+|ncιx,n(−α) for α ∈ Q.

Here, ι ∈W is as in (2.1).
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(P4) For x ∈W and p, q ≥ 1, one has

Px,p(z)Px,q(z) = Px,p+q−2(z).

Equivalently, one has∑
β

cx,p (α+ β) cx,q (−β) = cx,p+q−2(α) for α ∈ Q.

In particular, the product Px,p(z)Px,q(z) is assumed to exist, hence
the sum over β here is finite.

Note that (P4) for p = 1 or q = 1 together with (2.6) is equivalent to (P2).

Definition 2.3. A collection of series P as in (2.5) is symmetric if it satis-
fies the following property:

(P5) For x,w ∈W and n ≥ 0, one has

[Px,n(z)]α = (−1)`(w)n [Pwx,n(z)]w(α) for α ∈ Q.

Equivalently, one has

cx,n(α) = (−1)`(w)ncwx,n(w(α)) for α ∈ Q.

Note that (P3) is the special case of (P5) with w = ι.

Remark 2.4. Properties (P1) and (P2) with n ∈ {1, 2} imply

Px,n(z) :=



( ∑
w∈W

(−1)`(w) z2w(ρ)

)2

if n = 0,∑
w∈W

(−1)`(w) z2w(ρ) if n = 1,

1 if n = 2.

In particular, Px,n(z) for n ∈ {0, 1, 2} does not depend on x. Moreover, (P4)
implies

Px,n(z) = (Px,3(z))n−2 if n ≥ 3

for x ∈ W . Thus an admissible collection is determined by a collection of
series

Px(z) := Px,3(z) for x ∈W

such that (Px(z))n exists for n ≥ 2, and satisfying (P3) and (P2) with n = 3.
The latter is:

1 =

(∑
w∈W

(−1)`(ιw) z2ιw(ρ)

)
Px(z).(2.8)
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2.2. A key example: the Kostant collection. Consider

(2.9) K(z) :=
∏
α∈∆+

∑
i≥0

z−(2i+1)α

 .

Expanding, this is

K(z) =
∑
α∈Q

k(α) z−2ρ−2α

where k(α) is the Kostant partition function defined as

k(α) :=
number of ways to represent α
as a sum of positive roots.

More generally, for x ∈W , define the Weyl twist of K(z) by x as

(2.10) Kx(z) = (−1)`(x)
∑
α∈Q

k(α) z−x(2ρ+2α).

Define the Kostant collection K as

Kx,n(z) :=



( ∑
w∈W

(−1)`(w) z2w(ρ)

)2

if n = 0,∑
w∈W

(−1)`(w) z2w(ρ) if n = 1,

1 if n = 2,

(Kx(z))n−2 if n ≥ 3

for x ∈W . Note that Kx,n(z) for n ∈ {0, 1, 2} does not depend on x.

Lemma 2.5. The Kostant collection K is admissible and symmetric.

Proof. After Remark 2.4, to show that the Kostant collection is admissible
it is enough to verify that Kx(z) for x ∈W satisfies the following properties:
the powers (Kx(z))n exist for n ≥ 2; (P2) with n = 3, which is equation
(2.8), holds; and (P3) holds. Since K(z) is in the ring Z

q
z−1

1 , . . . , z−1
r

y
, its

positive powers exist. The series Kx(z) is in a similar ring, hence its powers
exist for x ∈ W . Property (2.8) holds from the Weyl denominator formula
(2.2) and the fact that

(
zα − z−α

)∑
i≥0

z−(2i+1)α

 = 1

for each α ∈ ∆+.
For properties (P3) and (P5), the case n ∈ {0, 1, 2, 3} follows from the

definition and the fact that `(wx) ≡ `(w) + `(x) mod 2. Finally, the case
n ≥ 4 follows since Kx,n(z) = (Kx(z))n−2. �
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2.3. Proof of uniqueness. Here we prove Theorem 2. First we study
admissible collections:

Theorem 2.6. A collection P = (Px,n(z))x,n is admissible if and only if

(2.11) Px,n(z) :=



( ∑
w∈W

(−1)`(w) z2w(ρ)

)2

if n = 0,∑
w∈W

(−1)`(w) z2w(ρ) if n = 1,

1 if n = 2,

(Px(z))n−2 if n ≥ 3

where
Px(z) = Kf(x)(z)

for some map of sets f : W →W such that f(ιx) = ιf(x).
In particular, there are only finitely many admissible collections. When

Q = A1, the collection P = K is the unique admissible collection.

The map f in the statement induces a map of sets f : W/S2 → W/S2,
where S2 = {1W , ι}, which need not be injective, nor surjective. In particu-
lar,

(2.12) {Px(z) |x ∈W} ⊆ {Kw(z) |w ∈W}.
As we identify collections up to the action of W in (2.7), the statement
implies that an admissible collection is uniquely determined by f .

Proof. The backward implication follows as in Lemma 2.5. For the forward
implication, let P be an admissible collection. From Remark 2.4, it suffices
to determine Px(z) := Px,3(z) for x ∈ W . By (P4), the powers Pnx (z) exist

for n ≥ 2. However, by definition Px(z) is in the R-module R
q
z±1

1 , . . . , z±1
r

y
,

where products in general do not exist. For the powers Pnx (z) to exist, one
needs that Px(z) lies in a ring inside R

q
z±1

1 , . . . , z±1
r

y
. In particular, one

needs that Px(z) lies in a ring of Laurent series where for each i = 1, . . . , r,
the powers of zi are either bounded below or bounded above, i.e.,

Px(z) ∈ R ((zε11 , . . . , z
εr
r ))

for some choice of εi ∈ {1,−1}. Up to a reflection by a Weyl element, one
can assume that all variables zi have exponents bounded above, i.e.,

(2.13) Px(z) ∈ R
((
z−1

1 , . . . , z−1
r

))
.

We conclude by showing that Px(z) = K(z) as in (2.9). For this, we use
property (P2) with n = 3, which using (P1) simplifies as follows: for Px(z) =∑

α∈Q c(α) zα, one has

(2.14) (−1)|∆
+|
∑
w∈W

(−1)`(w) c (α+ 2w(ρ)) =

{
1 if α = 0 in Q,

0 otherwise.
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1

2

3

11

2 1

12

Figure 2. The lattice points of length at most 12 in the
support of K(z) with the corresponding coefficient in the
root lattice A2. Here the three positive roots have length 2
and are marked with dots.

µ

µ′

Figure 3. For a lattice point µ in the root lattice A2, the
figure shows µ′ and the lattice points µ′ + 2w(ρ) with w 6= ι.

First, some notation. Define the support of P (z) as

suppPx(z) := {α ∈ Q | c(α) 6= 0}.

One has

suppK(z) = −2ρ+ 2Z≥0〈∆−〉,
where ∆− = −∆+ is the set of negative roots (see Figure 2). From (2.13),
one has

suppPx(z) ⊇ suppK(z).

The argument below uses the lattice points in suppPx(z) that are larger
than the other lattice points in suppPx(z) — for two lattice points α1 and
α2, one says that α1 > α2 if α1 − α2 ∈ Z≥0〈∆+〉, i.e., α1 − α2 is a sum of
positive roots.

By contradiction, assume Px(z) 6= K(z). Write K(z) =
∑

α∈Q d(α) zα.

Let µ ∈ suppP (z) be a maximum lattice point with respect to > such that
c(µ) 6= d(µ). Such a maximum exists from the assumption (2.13). Apply
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1

2

3

4
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3

1

21

321

Figure 4. The nonzero coefficients k(α) for the lattice
points of length at most 6 in the root lattice A2.

(2.14) with µ′ := µ+ 2ρ, that is:

(2.15) (−1)|∆
+|
∑
w∈W

(−1)`(w) c
(
µ′ + 2w(ρ)

)
=

{
1 if µ′ = 0 in Q,

0 otherwise.

For w 6= ι, one has ρ+ w(ρ) > 0 (see [Hum, Corollary on pg. 50]), thus

µ′ + 2w(ρ) > µ,

hence c (µ′ + 2w(ρ)) = d (µ′ + 2w(ρ)) by definition of µ. Then the only
summand in (2.15) which differs from the corresponding identity for the
coefficients of K(z) is the one for w = ι. But then (2.15) implies c(µ) = d(µ),
a contradiction. �

Proof of Theorem 2. The first statement follows from Theorem 2.6. For the
second one, let P be an admissible and symmetric collection. From Theorem
2.6 and (2.12), it is enough to show that

{Px(z) |x ∈W} ⊇ {Kw(z) |w ∈W}.

This follows from (P5), hence the statement. �

Remark 2.7. It is interesting to compare Theorem 2 with a result from [AJK]:
It is shown there that there are infinitely many collections P satisfying (2.6),
(P1), (P2), and (P3) — this result there is stated for Q = A1 but holds
similarly for arbitrary Q. Thus Theorem 2 implies that only finitely many
of such collections P additionally satisfy (P4).

2.4. The A1 case. When Q = A1, the series K(z) from (2.9) and its Weyl
twist Kι(z) by the action of ι ∈ S2 from (2.1) are

K(z) :=
∑
i≥0

z−(2i+1) and Kι(z) := −
∑
i≥0

z2i+1.

Since W = S2, the map f from Theorem 2.6 is unique, hence the Kostant
collection K is the only admissible collection.
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2.5. The A2 case. When Q = A2, let α and β be the two simple roots.
Then α, β and ρ = α + β are the three positive roots, and the admissible
series K(z) from (2.9) is

K(z) =

∑
i≥0

z−(2i+1)α

∑
i≥0

z−(2i+1)β

∑
i≥0

z−(2i+1)ρ

 .

Since ρ = α+ β, a simple computation shows that this expands as

(2.16) K(z) =
∑
m,n≥0

min{m,n} z−2mα−2nβ.

Indeed, the coefficient of z−2mα−2nβ here follows from the computation

| {(i, j, k) ∈ 2N + 1 | iα+ jβ + kρ = 2mα+ 2nβ} |
= | {(i, j, k) ∈ 2N + 1 | (i+ k)α+ (j + k)β = 2mα+ 2nβ} |
= | {k ∈ 2N + 1 | k < 2m and k < 2n} |
= min{m,n}.

These values are represented in Figure 4. Equivalently, the Kostant partition
function from §2.2 for A2 is

k(aα+ bβ) = 1 + min{a, b} for a, b ≥ 0

and vanishes otherwise (see Figure 4). Consequently, one has

Kι(z) = −
∑
m,n≥0

min{m,n} z2mα+2nβ.

Consider the collection P defined as in (2.11) by

Pα(z) = Pβ(z) = Pρ(z) = K(z),

P−α(z) = P−β(z) = P−ρ(z) = Kι(z).

By Theorem 2.6, P is admissible. However P is not symmetric, as it is not
equivalent to the unique symmetric collection K modulo the action of W .

3. An invariant q-series

After defining Weyl assignments for reduced plumbing trees, we define a
q-series and state the main theorem about its invariance. We conclude with
a discussion of the relation with [GM, Par, Ri].

3.1. Weyl assignments. For a reduced plumbing tree Γ (as in §1.7) with
framing matrix B and a root lattice Q, a Weyl assignment is a map

ξ : V (Γ)→W, v 7→ ξv

such that

(3.1) ξv = 1W if deg v ≤ 2,
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with 1W being the identity element in W , and such that the values on
vertices across what we call forcing bridges are coordinated by the following
condition (3.2).

First, define a bridge of Γ to be a path in Γ connecting two vertices, both
of degree at least 3, through a sequence of degree-2 vertices.

Then, define a forcing bridge of Γ to be a bridge of Γ that can be con-
tracted down to a single vertex by a sequence of the Neumann moves (Aε)
and (C) from Figure 1. A forcing bridge of Γ between vertices v and w will
be denoted by Γv,w.

Finally, for a Weyl assignment ξ, one requires

(3.2) ξv = ι∆π(v,w)ξw for every forcing bridge Γv,w

where ι ∈ W is as in (2.1), and ∆π(v, w) is defined as the difference in
numbers of positive eigenvalues

(3.3) ∆π(v, w) := π(B)− π(B)

with B being the framing matrix of the plumbing tree obtained from Γ after
contracting Γv,w.

Define

Ξ := {Weyl assignments ξ on Γ}.
One has

|Ξ| = |W |n where n := |{v ∈ V (Γ) : deg v ≥ 3}| − |{forcing bridges}|.

3.2. The q-series. Let M be a weakly negative-definite or weakly positive-
definite plumbed 3-manifold. After a sequence of Neumann moves, one can
assume that M is constructed from a plumbing tree Γ which is reduced and
either weakly negative definite or weakly positive definite (see Lemma 1.5).
For a root lattice Q, select a representative a of a generalized Spinc-structure

(3.4) a ∈ δ + 2L′ ⊗Z Q ⊂ L′ ⊗Z Q,

a collection P of series as in (2.5) with coefficients in a commutative ring R,

and a subset S ⊆W V (Γ). Define
(3.5)

YP,S,a (q) := (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉 1

|S|
∑
ξ∈S

∑
`∈a+2BL⊗Q

cΓ,ξ(`) q
− 1

8
〈`,`〉

where

cΓ,ξ(`) :=
∏

v∈V (Γ)

[Pξv ,deg v(zv)]`v ∈ R.(3.6)

Here Px,n denotes the element of P as in §2, the operator [ ]α assigns to a
series in z the coefficient of the monomial zα for α ∈ Q, and `v ∈ Q denotes
the v-component of ` ∈ L′ ⊗Z Q ∼= QV (Γ) for v ∈ V (Γ).
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The series YP,S,a (q) naturally decomposes as

YP,S,a (q) =
1

|S|
∑
ξ∈S

YP,ξ,a (q)

where YP,ξ,a (q) is the series for the subset {ξ} ⊂W V (Γ).

Remark 3.1. The sum in the series is over ` such that ` ≡ a mod 2BL⊗Q.
As these ` are all the representative of the class of a in the quotient space
BQ(M) from (1.3), the series YP,a(q) depends on a at most up to its class
in BQ(M). Moreover, we show in Theorem 4.1 that YP,S,a(q) for S = Ξ

depends on a only up to its class in the space BWQ (M), which is the quotient

of BQ(M) modulo the action of the Weyl group W .

Lemma 3.2. If the plumbing tree is weakly negative definite, then the powers
of q in Y (q) are bounded below, and for each power of q there are only finitely
many contributions to Y (q). In particular, one has

(3.7) Y (q) ∈ q
1
2

(3σ−trB)〈ρ,ρ〉− 1
8
〈a,a〉 1

|S|
R
((
q

1
2

))
.

Similarly, if the plumbing tree is weakly positive definite, then

Y (q) ∈ q
1
2

(3σ−trB)〈ρ,ρ〉− 1
8
〈a,a〉 1

|S|
R
((
q−

1
2

))
.

Proof. This is similar to the argument for the series Ẑa(q) from [GM]. The
sum over ` can be decomposed as a sum over the entries of ` corresponding
to vertices of degree at most 2 and the entries corresponding to vertices
of degree at least 3. For the former ones, there are only finitely many
contributions due to the definition of admissible collections, see Remark 2.4.
For the latter ones, the boundedness of the exponents of q and the finiteness
of the contributions to each power of q follow from the assumption that
the plumbing tree is weakly negative definite. Recall from §1.4 that this
implies that the inverse B−1 of the framing matrix is negative definite on
the subspace spanned by the vertices of degree at least 3.

Finally, the exponents of q in (3.7) follow from the fact that for an element
` ∈ a+ 2BL⊗Q, one has 〈`, `〉 ∈ 〈a, a〉+ 4Z. �

The Laurent ring in (3.7) can be simplified for Q = A1: since the pairing
in A1 is always even, one has 〈`, `〉 ∈ 〈a, a〉 + 8Z, hence (3.7) for Q = A1

becomes

Y (q) ∈ q
1
4

(3σ−trB−a2) 1

|S|
R ((q)) .

Here we use that 〈ρ, ρ〉 = 1
2 for Q = A1.

Our main result here is:

Theorem 3.3. For an admissible P and S ⊆ Ξ, any two reduced plumbing
trees for M which are related by a series of the five Neumann moves from
Figure 1 yield the same series YP,S,a (q).
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Here Ξ is the set of Weyl assignments from §3.1. We prove the statement
in §4. Combining Lemma 3.2 and Theorem 3.3, we immediately deduce:

Corollary 3.4. For an admissible P, a set S ⊆ Ξ, and a reduced and refin-
able plumbing tree Γ, the series YP,S,a (q) is a Laurent series in either q1/2

or q−1/2 with integer coefficients, up to an overall factor that is a rational
power of q.

Remark 3.5. Given a collection P that is admissible, the resulting series
YP,S,a (q) may be obtained from the Kostant collection K from §2.2 to-
gether with a possibly different set S′ ⊆ Ξ. Indeed, from Theorem 2.6, an
admissible collection is uniquely determined by

Px(z) = Kf(x)(z)

for some map of sets f : W → W such that f(ιx) = ιf(x). It follows from
its definition that the series YP,S,a (q) coincides with the series obtained for

P = K and some S′ ⊆ Ξ ∩ Image(f)V (Γ). Moreover, in this case one has by
definition

(3.8) YK,ξ,a(q) = YK,w(ξ),w(a)(q) for ξ ∈ Ξ and w ∈W.

3.3. The A1 case and Ri’s series. For Q = A1, P = K the Kostant
collection, and S = Ξ, the resulting series YP,S,a (q) coincides with the q-
series from [Ri].

3.4. Relation with the series Ẑa(q). Assume that S = Ξ and the reduced
weakly negative-definite plumbing tree Γ has no forcing bridges (e.g., this is
the case when Γ has at most one vertex of degree at least 3). Then for each
`, the coefficients cΓ,ξ(`) from (3.6) satisfy

(3.9)
1

|Ξ|
∑
ξ∈Ξ

cΓ,ξ(`) =
∏

v∈V (Γ)

(
1

|W |
∑
x∈W

[Px,deg v(zv)]`v

)
.

This is due to the fact that in the absence of forcing bridges, the values of
the Weyl assignments on various vertices do not need to be coordinated as
in (3.2); and the fact that for n ∈ {0, 1, 2}, the series Px,n(z) is independent
of x, and thus

(3.10) Px,n(z) =
1

|W |
∑
x∈W

Px,n(z) for n ∈ {0, 1, 2}.

Now, consider the case P = K as in §2.2.

Lemma 3.6. For arbitrary n ≥ 0 and α ∈ Q, one has

1

|W |

[∑
x∈W

Kx,n(z)

]
α

= v.p.

∮
|z1|=1

. . . v.p.

∮
|zr|=1

(∑
w∈W

(−1)`(w) z2w(ρ)

)2−n

z−α
r∏

k=1

dzk
2πizk

.
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Proof. Here v.p. stands for the principal value (valeur principale in French)
of the integral and is computed as follows. For n ∈ {0, 1, 2}, the term

(3.11)

(∑
w∈W

(−1)`(w) z2w(ρ)

)2−n

expands as a finite sum, and the v.p. integral is simply the regular integral.
Hence, for α ∈ Q, the right-hand side equals the coefficient of zα in the
expansion of (3.11), and the lemma holds by (3.10) and the definition of K.

For n ≥ 3, applying the Weyl denominator formula (2.2), one sees that
the term (3.11) is singular when zβ = ±1 for β ∈ ∆+. In this case, the
term (3.11) admits various series expansions, one in each Weyl chamber.
For α ∈ Q, the right-hand side is defined as the average of the coefficients of
zα among these various series expansions. As the various series expansions
coincide with Kx,n(z) for x ∈W , the lemma holds. �

It follows that (3.9) can be expressed as a product of v.p. integrals. In
particular, when the plumbing tree Γ is reduced weakly negative definite

and has no forcing bridges, the series YW,a (q) recovers the series Ẑa(q) from

[Par]. And for Q = A1, this equals the series Ẑa(q) from [GPPV, GM].

4. Invariance of the q-series

Here we consider the series Y (q) := YP,S,a (q) with P admissible as in

§2 and S = W V (Γ). We first prove the invariance of the series Y (q) with
respect to the action of the Weyl group and then prove Theorem 3.3.

Recall the coefficients cΓ,ξ(`) from (3.6).

Theorem 4.1. If P is symmetric and S = Ξ, then for ` ∈ δ + 2L′ ⊗Z Q ⊂
L′ ⊗Z Q, one has∑

ξ∈Ξ

cΓ,ξ(`) =
∑
ξ∈Ξ

cΓ,ξ(w(`)) for w ∈W.

In particular, when it exists, the series Y (q) is invariant by the action of
the Weyl group W , that is, YP,Ξ,a (q) = YP,Ξ,w(a) (q), for w ∈W .

Proof. The first part of the statement follows after multiplying the identity
in property (P5) over all vertices in the reduced plumbing tree Γ, summing
over all ξ ∈ Ξ, and applying the identity∏

v∈V (Γ)

(−1)deg v = 1.

This identity follows since
∑

v∈V (Γ) deg v is even, as every edge of Γ is inci-

dent to two vertices in Γ. Moreover, the last part of the statement follows
from the fact that 〈`, `〉 = 〈w(`), w(`)〉 for w ∈ W , hence the exponent of q
is also invariant by the action of W . �

We now prove Theorem 3.3:
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Proof of Theorem 3.3. Let M be a weakly negative-definite plumbed 3-man-
ifold, and let Q be a root lattice. Select an admissible collection P for Q.
We verify that any two reduced plumbing trees for M which are related
by a series of the five Neumann moves from Figure 1 yield the same series
Ya (q) for all representatives a of a generalized Spinc-structure for Q. We
use the fact that any two reduced plumbing trees for M which are related
by a series of the five Neumann moves from Figure 1 are in fact related by
a sequence of the Neumann moves from Figure 1 which do not create any
reducible vertices [Ri, Prop. 3.4].

For each such move, we argue that the two q-series arising from the two
plumbing trees are equal. As in the proof of Proposition 1.2, we use the
notation B : L ↪→ L′ and δ for the terms related to the bottom plumbing
tree Γ, and the notation B◦ : L◦ ↪→ L′◦ and δ◦ for the corresponding terms
related to the top plumbing tree Γ◦. The signatures of B and B◦ will be
denoted by σ and σ◦, respectively, and the numbers of positive eigenvalues
of B and B◦ will be denoted by π and π◦, respectively.

Select a representative of a generalized Spinc-structure a for the bottom
plumbing tree. For each move, we start by observing how the factor

(4.1) (−1)|∆
+|πq

1
2

(3σ−trB)〈ρ,ρ〉

in front of the sum in the series changes under the move. Afterwards, we
focus on the sum over the various representatives ` ∈ a + 2BL ⊗ Q of
the generalized Spinc-structure. For this, recall from Proposition 1.4 that
the space of generalized Spinc-structures is invariant under the Neumann
moves. However, for each move, the column space of B is isomorphic to
some subspace of the column space of B◦, see Remark 1.1. It follows that
for each representative ` of the generalized Spinc-structure for the bottom
tree, there is a corresponding affine space of generalized Spinc-structures for
the top plumbing tree. Thus for each move, we argue that the contribution
of each ` for the bottom plumbing tree equals the sum of the contributions
of the elements in the corresponding affine space for the top plumbing tree.

Moreover, for each move, we use the assumption that Γ and Γ◦ are reduced
to show that their sets of Weyl assignments are isomorphic. Then as the
series for S ⊆ Ξ is the average of the series for the 1-element subsets of S,
it is enough to prove the statement when S has size 1.

Step (A−): The Neumann move (A−) from Figure 1. There exists an extra
term in the quadratic form corresponding to B◦ with respect to the quadratic
form corresponding to B given by

−x2
0 − x2

1 − x2
2 + 2x0x1 + 2x0x2 − 2x1x2 = −(x0 − x1 − x2)2,

where x0 is the variable corresponding to the added vertex and x1 and x2

are the variables corresponding to its two adjacent vertices in Γ◦. It follows
that

σ◦ = σ − 1 and π◦ = π.
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Since trB◦ = trB − 3, one has 3σ◦ − trB◦ = 3σ − trB. We conclude that
the factor (4.1) in front of the sum in the series is invariant under this move.

Next, we consider the sum in the series. Recall the function R from (1.6)
with ε = −:

R : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a1, a2) 7→ (a1, 0, a2).

Here the subtuple a1 corresponds to the vertices of Γ consisting of the vertex
labeled by m1 and all vertices on its left. The subtuple a2 corresponds to
the vertices of Γ consisting of the vertex labeled by m2 and all vertices
on its right. The 0 entry corresponds to the added vertex in Γ◦. (See
Remark 1.3 about the determination of left and right parts of the trees.)
For a ∈ δ + 2L′ ⊗Z Q, define a◦ := R(a) ∈ δ◦ + 2L′◦ ⊗Z Q.

Since Γ◦ does not have a new vertex of degree ≥ 3, nor has it a new
forcing bridge, the top and bottom plumbing trees have isomorphic sets of
Weyl assignments. For a Weyl assignment ξ on Γ, let ξ◦ be the naturally
induced Weyl assignment on Γ◦.

The added vertex in Γ◦ has degree 2. From (P1), we deduce that for
`◦ ∈ a◦ + 2B◦L◦ ⊗Z Q, one has cΓ◦,ξ◦(`◦) = 0 when the component of `◦
corresponding to the added vertex is non-zero. Hence, we can restrict the
sum in the series for Γ◦ over only those `◦ which are of type `◦ = R(`) for
some ` ∈ a+2BL⊗ZQ. As R is injective, it will be enough to verify that the
contribution of ` ∈ a+ 2BL⊗ZQ in the series for Γ equals the contribution
of R(`) in the series for Γ◦.

From (P1), one has cΓ◦,ξ◦(R(`)) = cΓ,ξ(`). Moreover, a direct computation
shows that

B−1` = (h1, h2) ⇒ B−1
◦ R(`) = (h1, h0, h2)

for some h0. (Specifically, h0 is the sum of the entry of h1 and the entry
of h2 corresponding to the two vertices adjacent to the added vertex in
Γ◦. However, the explicit expression of h0 will not be needed below.) This
implies that writing ` = (`1, `2), one has

(4.2) 〈R(`), R(`)〉 = (`1, 0, `2)t(h1, h0, h2) = 〈`, `〉.
We conclude that

(4.3) cΓ,ξ(`) q
− 1

8
〈`,`〉 = cΓ◦,ξ◦(R(`)) q−

1
8
〈R(`),R(`)〉.

Hence the contribution of ` in the series for Γ equals the contribution of
R(`) in the series for Γ◦. This implies the statement for this move.

Step (A+): The Neumann move (A+) from Figure 1. In this case, one has

σ◦ = σ + 1, π◦ = 1 + π, 3σ◦ − trB◦ = 3σ − trB.

We conclude that the factor (4.1) in front of the sum in the series for Γ◦ has

an extra factor (−1)|∆
+|.

Next, we use the function R from (1.6) this time with ε = +:

R : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a1, a2) 7→ (a1, 0,−a2).
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For a ∈ δ + 2L′ ⊗Z Q, define a◦ := R(a) ∈ δ◦ + 2L′◦ ⊗Z Q.
As for the previous move, the sets of Weyl assignments for the two plumb-

ing trees are isomorphic. The natural isomorphism is defined as follows. For
a Weyl assignment ξ for the bottom plumbing tree, define a Weyl assign-
ment ξ◦ for the top plumbing tree such that for a vertex v with deg v ≥ 3,
one has

(4.4) ξ◦ : v 7→
{
ξv if v is on the left of the added vertex,
ιξv if v is on the right of the added vertex.

Here, ι ∈W is as in (2.1). Since the added vertex has degree 2, the value of
ξ◦ at the added vertex is 1W , as determined by (3.1).

Note that when the added vertex is on a forcing bridge Γv,w, the definition
of ξ◦ via (4.4) is compatible with the condition (3.2), since

∆π◦(v, w) = ∆π(v, w) + 1

where ∆π(v, w) and ∆π◦(v, w) are the differences in numbers of positive
eigenvalues obtained from the contraction of the bridge Γv,w in Γ and Γ◦,
respectively, as in (3.3).

As for the previous move, we can restrict the sum in the series for Γ◦ over
only those `◦ which are of type `◦ = R(`) for some ` ∈ a + 2BL ⊗Z Q. In
this case, we have

(4.5) cΓ,ξ(`) = (−1)|∆
+|cΓ◦,ξ◦(R(`)).

This follows from (P3), the definition of ξ◦, and the fact that

(4.6)
∏

v∈V2(Γ◦)

(−1)deg v = −1

where V2(Γ◦) is the set of all vertices of Γ◦ on the right of the added vertex.
Indeed, one has that

∑
v∈V2(Γ◦)

deg v is odd, since every edge on the right of

the added vertex in Γ◦ is incident to two vertices in V2(Γ◦) with the exception
of the edge incident to the added vertex, which is incident to only one vertex

in V2(Γ◦). The factor (−1)|∆
+| in (4.5) matches the extra contribution to

the factor (4.1) in front of the sum in the series for Γ◦. That is, we have

(−1)|∆
+|πcΓ,ξ(`) = (−1)|∆

+|π◦cΓ◦,ξ◦(R(`)).

A direct computation shows that

B−1` = (h1, h2) ⇒ B−1
◦ R(`) = (h1, h0,−h2)

for some h0. (Specifically, h0 is minus the sum of the entry of h1 and the
entry of −h2 corresponding to the two vertices adjacent to the added vertex
in Γ◦; however, the formula for h0 will not be needed below.) This implies
that

(4.7) 〈R(`), R(`)〉 = (`1, 0,−`2)t(h1, h0,−h2) = 〈`, `〉.
We conclude that

(4.8) (−1)|∆
+|πcΓ,ξ(`) q

− 1
8
〈`,`〉 = (−1)|∆

+|π◦cΓ◦,ξ◦(R(`)) q−
1
8
〈R(`),R(`)〉.
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Hence the contribution of ` in the series for Γ equals the contribution of
R(`) in the series for Γ◦. Since R is injective, the statement for this move
follows.

Step (B−): The Neumann move (B−) from Figure 1. In this case, one has

σ◦ = σ − 1, π◦ = π, 3σ◦ − trB◦ = −1 + 3σ − trB.

We conclude that the factor (4.1) in front of the sum in the series for Γ◦ has

an extra factor q−
1
2
〈ρ,ρ〉.

For a choice of w ∈W , consider the function:

(4.9) Rw : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a], a1) 7→ (a], a1 + 2w(ρ),−2w(ρ))

with entry a1 corresponding to the vertex of Γ labeled by m1, subtuple a]
corresponding to all other vertices of Γ, and entry −2w(ρ) on the right-hand
side corresponding to the added vertex in Γ◦. Note that the function R from
(1.7) with ε = − is R = Rw with w = 1W . For a ∈ δ + 2L′ ⊗Z Q, define
a◦ := R(a) ∈ δ◦ + 2L′◦ ⊗Z Q.

The added vertex in Γ◦ has degree 1. From (2.6), we deduce that for
`◦ ∈ a◦ + 2B◦L◦ ⊗Z Q, one has cΓ◦,ξ◦(l◦) = 0 when the component of `◦
corresponding to the added vertex is not in the orbit −2W (ρ). Hence, we
can restrict the sum in the series for Γ◦ over only those `◦ which are of type
`◦ = Rw(`) for some ` ∈ a + 2BL ⊗Z Q and some w ∈ W . Note that for
` ∈ a+ 2BL⊗Z Q and w ∈W , one indeed has

Rw(`) ∈ a◦ + 2B◦L◦ ⊗Z Q.

Let n be the degree of the vertex in Γ◦ adjacent to the added vertex.
Then the degree of the corresponding vertex in Γ is n− 1. The assumption
that this Neumann move does not create a reducible vertex implies n 6= 3.
It follows that Γ◦ does not have a new vertex of degree at least 3, nor has
it a new forcing bridge, hence the top and bottom plumbing trees have
isomorphic sets of Weyl assignments.

For ` ∈ a + 2BL⊗Z Q, write ` = (`], `1). Select a Weyl assignment ξ on
Γ, let ξ◦ be the corresponding Weyl assignment on Γ◦, and let x ∈ W be
the value of ξ◦ at the vertex in Γ◦ adjacent to the added vertex. From (P2),
one has

cx,n−1(`1) = (−1)|∆
+|
∑
w∈W

(−1)`(w) cx,n (`1 + 2w(ρ))

=
∑
w∈W

c1W ,1 (−2w(ρ)) cx,n (`1 + 2w(ρ)) .
(4.10)

The second identity follows from Lemma 2.1 and (2.6), which together imply

(−1)|∆
+|(−1)`(w) = (−1)`(ιw) = c1W ,1 (−2w(ρ)) for w ∈W .
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Multiplying both sides of (4.10) by the contributions corresponding to the
remaining vertices of Γ, one has∏

v∈V (Γ)

[Pξv ,deg v(zv)]`v =
∑
w∈W

∏
v∈V (Γ◦)

[
Pξ◦(v),deg v(zv)

]
Rw(`)v

.

I.e., one has

(4.11) cΓ,ξ(`) =
∑
w∈W

cΓ◦,ξ◦(Rw(`)).

Next, we consider the powers of q. For w ∈ W , a direct computation
shows that

B−1` = (h], h1) ⇒ B−1
◦ Rw(`) = (h], h1, h1 + 2w(ρ)) .

This implies that

〈Rw(`), Rw(`)〉 = (`], `1 + 2w(ρ),−2w(ρ))t (h], h1, h1 + 2w(ρ))

= 〈`, `〉 − 4〈ρ, ρ〉.

Thus from (4.11), we have

(4.12) cΓ,ξ(`) q
− 1

8
〈`,`〉 = q−

1
2
〈ρ,ρ〉

∑
w∈W

cΓ◦,ξ◦(Rw(`)) q−
1
8
〈Rw(`),Rw(`)〉.

The factor q−
1
2
〈ρ,ρ〉 on the right-hand side matches the extra contribution to

the factor (4.1) in front of the sum in the series for Γ◦. We conclude that
the contribution of ` in the series for Γ equals the sum over w ∈ W of the
contributions of Rw(`) in the series for Γ◦. Since the maps Rw for w ∈ W
are injective, the statement for this move follows.

Step (B+): The Neumann move (B+) from Figure 1. In this case, one has

σ◦ = 1 + σ, π◦ = 1 + π, 3σ◦ − trB◦ = 1 + 3σ − trB.

We conclude that the factor (4.1) in front of the sum in the series for Γ◦ has

an extra factor (−1)|∆
+|q

1
2
〈ρ,ρ〉.

For a choice of w ∈W , consider the function

(4.13) Rw : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a], a1) 7→ (a], a1 + 2w(ρ), 2w(ρ)).

For a ∈ δ + 2L′ ⊗Z Q, define a◦ := R(a) ∈ δ◦ + 2L′◦ ⊗Z Q where R = Rw
with w = 1W .

As with the previous move, we can restrict the sum in the series for Γ◦
over only those `◦ which are of type `◦ = Rw(`) for some ` ∈ a+ 2BL⊗Z Q
and some w ∈ W . Also, let n be the degree of the vertex in Γ◦ adjacent
to the added vertex. As with the previous move, the assumption that this
Neumann move does not create a reducible vertex implies n 6= 3, and thus
there are no new forcing bridges. Hence the sets of Weyl assignments for
the two plumbing trees are isomorphic.

For ` ∈ a+ 2BL⊗Z Q, write ` = (`], `1). Select a Weyl assignment ξ on
Γ, let ξ◦ be the corresponding Weyl assignment on Γ◦, and let x ∈W be the
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value of ξ at the vertex in Γ◦ adjacent to the added vertex. From (P2), one
has

cx,n−1(`1) = (−1)|∆
+|
∑
w∈W

(−1)`(w) cx,n (`1 + 2w(ρ))

= (−1)|∆
+|
∑
w∈W

c1W ,1 (2w(ρ)) cx,n (`1 + 2w(ρ)) .
(4.14)

The second identity follows from (2.6). Multiplying both sides of (4.14) by
the contributions corresponding to the remaining vertices of Γ, one has∏

v∈V (Γ)

[Pξv ,deg v(zv)]`v = (−1)|∆
+|
∑
w∈W

∏
v∈V (Γ◦)

[
Pξ◦(v),deg v(zv)

]
Rw(`)v

.

This is

(4.15) cΓ,ξ(`) = (−1)|∆
+|
∑
w∈W

cΓ◦,ξ◦(Rw(`)).

For w ∈W , a direct computation shows that

B−1` = (h], h1) ⇒ B−1
◦ Rw(`) = (h], h1, 2w(ρ)− h1) .

This implies that

〈Rw(`), Rw(`)〉 = (`], `1 + 2w(ρ), 2w(ρ))t (h], h1, 2w(ρ)− h1)

= 〈`, `〉+ 4〈ρ, ρ〉.
Thus from (4.15), we have

(−1)|∆
+|πcΓ,ξ(`) q

− 1
8
〈`,`〉

= (−1)|∆
+|π◦q

1
2
〈ρ,ρ〉

∑
w∈W

cΓ◦,ξ◦(Rw(`)) q−
1
8
〈Rw(`),Rw(`)〉.

(4.16)

The factor q
1
2
〈ρ,ρ〉 on the right-hand side matches the extra contribution to q

in the factor (4.1) in front of the sum in the series for Γ◦. We conclude that
the contribution of ` in the series for Γ equals the sum over w ∈ W of the
contributions of Rw(`) in the series for Γ◦. Since the maps Rw for w ∈ W
are injective, the statement for this move follows.

Step (C): The Neumann move (C) from Figure 1. In this case, one has

σ◦ = σ, π◦ = 1 + π, 3σ◦ − trB◦ = 3σ − trB.

We conclude that the factor (4.1) in front of the sum in the series for Γ◦ has

an extra factor (−1)|∆
+|.

Recall the function Rβ with β ∈ Q from (1.8):

Rβ : L′ ⊗Z Q→ L′◦ ⊗Z Q, (a], a0, a[) 7→ (a], a0 + β, 0, β,−a[)
where the entry a0 corresponds to the vertex in Γ labelled by m1 +m2, the
entries a0 + β, 0, and β correspond to the vertices in Γ◦ labelled by m1,
0, and m2, respectively, and the subtuples a] and a[ correspond to all the
vertices in Γ◦ on their left and right, respectively.



30 A.H. MOORE AND N. TARASCA

For a ∈ δ + 2L′ ⊗Z Q, define a◦ ∈ δ◦ + 2L′◦ ⊗Z Q as

a◦ :=

{
R2ρ(a) if deg(v1) ≡ deg(v2) mod 2,

R0(a) otherwise.

This is as in (1.9).
As the vertex labelled by 0 in Γ◦ has degree 2, from (P1) we deduce that

for `◦ ∈ a◦ + 2B◦L◦ ⊗Z Q, one has cΓ◦,ξ◦(`◦) = 0 when `◦ has a non-zero
component corresponding to the vertex of Γ◦ labelled by 0. Hence, we can
restrict the sum in the series for Γ◦ over only those `◦ which are of type
`◦ = Rβ(`) for some ` ∈ a + 2BL ⊗Z Q and some β ∈ Q. Note that for
` ∈ a+ 2BL⊗Z Q and β ∈ Q, one has

Rβ(`) ∈ a◦ + 2B◦L◦ ⊗Z Q

if and only if β ∈ β0 + 2Q with β0 defined as in (1.9).
Select a Weyl assignment ξ for Γ, and define a Weyl assignment ξ◦ for Γ◦

such that, for a vertex v with deg v ≥ 3, one has

(4.17) ξ◦ : v 7→
{
ξv if v is on the left of v1,
ιξv if v is on the right of v2.

Here ι is as in (2.1), and v1 and v2 are the vertices labelled by m1 and m2

in Γ◦. Moreover, define

ξ◦(v1) := ξ(v0) and ξ◦(v2) := ιξ(v0)

where v0 is the vertex labelled by m1 + m2 in Γ. The value of ξ◦ at the
vertex labelled by 0 in Γ◦ is 1W , as determined by (3.1). The map ξ 7→ ξ◦
is the natural isomorphism of the sets of Weyl assignments for Γ and Γ◦.

Let p and q be the degrees of the vertices v1 and v2 in Γ◦, respectively.
Then the degree of the vertex v0 in Γ is p+q−2. Recall that we are assuming
that the Neumann move does not create a new reducible vertex. Moreover,
when p, q ≥ 3, the tree Γ◦ has one more forcing bridge with respect to Γ,
and the definition of ξ◦ is compatible with the condition (3.2).

For ` ∈ a + 2BL ⊗Z Q, write ` = (`], `0, `[). Let x := ξ(v0) ∈ W . From
(P4), one has

cx,p+q−2(`0) =
∑

β∈β0+2Q

cx,p (`0 + β) cx,q (−β) .

Applying (P3), one has

(4.18) cx,p+q−2(`0) = (−1)|∆
+| q

∑
β∈β0+2Q

cx,p (`0 + β) cιx,q (β) .

Let V[(Γ◦) be the set of all vertices of Γ◦ on the right of the vertex labelled by
m2. Applying (P3) to all contributions corresponding to vertices in V[(Γ◦)
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and using that q +
∑

v∈V[(Γ◦) deg v is odd (this is as in (4.6)), one has

(−1)|∆
+| qcιx,q (β)

∏
v∈V[(Γ◦)

cξv ,deg v(`v)

= (−1)|∆
+|cιx,q (β)

∏
v∈V[(Γ◦)

cιξv ,deg v(−`v).

Multiplying both sides of (4.18) by the contributions corresponding to the
remaining vertices, using (P1) and the last identity, one has
(4.19)∏

v∈V (Γ)

[Pξv ,deg v(zv)]`v = (−1)|∆
+|

∑
β∈β0+2Q

∏
v∈V (Γ◦)

[
Pξ◦(v),deg v(zv)

]
Rβ(`)v

.

This is

(4.20) cΓ,ξ(`) = (−1)|∆
+|

∑
β∈β0+2Q

cΓ◦,ξ◦(Rβ(`)).

The factor (−1)|∆
+| on the right-hand side matches the extra contribution

to the factor (4.1) in front of the sum in the series for Γ◦.
For β ∈ Q, a direct computation shows that

B−1` = (h], h0, h[) ⇒ B−1
◦ Rβ(`) =

(
h], h0, h

′
0,−h0,−h[

)
for some h′0 ∈ Q. This implies that

(4.21) 〈Rβ(`), Rβ(`)〉 = (`], `0 +β, 0, β,−`[)t
(
h], h0, h

′
0,−h0,−h[

)
= 〈`, `〉.

We conclude that
(4.22)

(−1)|∆
+|πcΓ,ξ(`)q

− 1
8
〈`,`〉 = (−1)|∆

+|π◦
∑

β∈β0+2Q

cΓ◦,ξ◦(Rβ(`))q−
1
8
〈Rw(`),Rw(`)〉.

Hence the contribution of ` in the series for Γ equals the sum over β ∈ β0+2Q
of the contributions of Rβ(`) in the series for Γ◦. Since the maps Rβ are
injective for all β, the statement for this move follows.

This concludes the proof. �

5. Strong characterization of admissibility and symmetry

Here we prove a strong characterization of the admissible and symmetric
collections and conclude with the proof of Theorems 1 and 3.

Theorem 5.1. When it exists, the series Y (q) = YP,S,a (q) obtained from

a collection P satisfying (2.6) and a subset S ⊆W V (Γ) is:

(i) invariant under the five Neumann moves amongst reduced plumbing
trees if and only if P is admissible and S ⊆ Ξ, and

(ii) additionally invariant under the action of the Weyl group W on a,
i.e.,

YP,S,a (q) = YP,w(S),w(a) (q) , for w ∈W ,

if and only if P is admissible and symmetric and S = Ξ.
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Proof. After Theorems 3.3 and 4.1, it remains to prove the “only if” state-
ments. For the “only if” in part (i), assume Y (q) is invariant under the
five Neumann moves amongst reduced plumbing trees. We prove that the
collection P is necessarily admissible, i.e., P satisfies properties (P1)–(P4).
We use notation as in the proof of Theorem 3.3.

For each Neumann move in Figure 1, the vertex set of Γ is naturally iden-
tified with a subset of the vertex set of Γ◦. The bijection of the generalized
Spinc-structures from (1.5) is induced by the map R defined in (1.6)–(1.9),
see Proposition 1.4. Depending on the Neumann move, R might entail a
minus sign on the entries corresponding to the right portion of Γ◦. The
map R induces a map ξ 7→ ξ◦ such that ξ◦(v) = ξ(v) if R(`)v = `v, while
ξ◦(v) = ιξ(v) if R(`)v = −`v. Thus the map ξ 7→ ξ◦ is as in (4.4) and (4.17).
The value of ξ◦ at a new vertex of Γ◦ of degree 1 or 2 could possibly be
arbitrary.

Assume Y (q) is invariant under the Neumann move (A−). An element `◦
in the image of the map R in (1.6) has component 0 corresponding to the
added vertex v0 in Γ◦. From the definition of the coefficient cΓ,ξ(`) in (3.6),
one deduces [

Pξ◦(v),2(zv)
]
0

= 1

for v = v0. After possibly removing contributions that sum to zero, it follows
that (P1) holds.

Next, assume Y (q) is also invariant under the Neumann move (A+). Then
necessarily, one has

cΓ,ξ(`) = (−1)|∆
+|cΓ◦,ξ◦(R(`))

as in (4.5). Let v2 be the vertex labelled by m2 in Γ. By induction on the
degree of v2 across all plumbing trees Γ, one deduces that

cx,n(α) = (−1)|∆
+|ncιx,n(−α) for α ∈ Q

where x = ξv and n = deg v for v equal to v2 or a vertex on its right. Hence
(P3) holds.

Assume Y (q) is invariant under the Neumann move (B−). From the
assumption (2.6), the sum in the series for Γ◦ is over elements `◦ whose
component corresponding to the added vertex v0 is in the orbit −2W (ρ),
i.e., `◦ is in the image of Rw for some w ∈ W as in (4.9), up to removing
contributions that sum to zero. As in (4.10) and using the same notation as
in there, one then has

cx,n−1(`1) =
∑
w∈W

cξ◦(v0),1 (−2w(ρ)) cx,n (`1 + 2w(ρ)) .

Together with the assumption (2.6), this implies (P2).
Finally, assume Y (q) is also invariant under the Neumann move (C). Then

necessarily, one has

cΓ,ξ(`) = (−1)|∆
+|

∑
β∈β0+2Q

cΓ◦,ξ◦(Rβ(`))
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as in (4.20). By induction on the degree of the vertex labelled by m2 in Γ◦
and combining with (P3), now verified, one deduces that

cx,p+q−2(`0) =
∑

β∈β0+2Q

cx,p (`0 + β) cx,q (−β)

hence (P4) holds.

Next, we show that S ⊆ Ξ. Assume instead W s ⊇ S ) Ξ. From Theorem
2.6, one has

{Px,n(z) |x ∈W, n ≥ 0} ⊆ {Kw,n(z) |w ∈W, n ≥ 0}.

Since Px,n(z) is independent of x for n ∈ {0, 1, 2}, after possibly replacing
S without affecting the series, we can assume that (3.1) holds. Then the
assumption S ) Ξ implies that for a plumbing tree Γ there exists a forcing
bridge between vertices u and v and ξ ∈ S such that the values ξu and
ξv are not coordinated as in (3.2). Then contracting this forcing bridge
via a sequence of the Neumann moves results in the evaluation of a product
Kx,n(z)Ky,m(z) with x 6= y and n,m ≥ 3. Since the product Kx,n(z)Ky,m(z)
with n,m ≥ 3 is defined only for x = y, this leads to a contradiction. It
follows that necessarily S ⊆ Ξ, hence part (i).

Next, we prove that if Y (q) is also invariant under the action of W ,
then P is necessarily symmetric, i.e., P satisfies (P5). The case n = 2 is
trivially satisfied by (P2), now verified, and the case n = 1 follows from
the assumption (2.6). Similarly, the case n = 0 follows from the fact that
Px,0(z) is uniquely determined as in Remark 2.4. Also, as property (P4)

implies Px,n(z) = (Px,3(z))n−2 for n > 3, it remains to discuss the case
n = 3. This follows from the invariance under W of the series Ya (q) for
plumbing trees with exactly one vertex of degree 3. Hence (P5) holds.

It remains to verify that necessarily S = Ξ. From Theorem 2, it follows
that P = K. Then assuming S ( Ξ contradicts the invariance of the series
Y (q) under W (unless the series for S and Ξ coincide). It follows that the
series is obtained from the case S = Ξ, hence part (ii). �

Proof of Theorems 1 and 3. The statements follow from Theorems 5.1 and 2.
�

Remark 5.2. As in Remark 2.7, it is interesting to compare this statement
with the results from [AJK]: To obtain invariance only under the Neumann
moves between negative-definite plumbing trees, i.e., the Neumann move
(A−) and (B−), one only requires that the collections P with (2.6) satisfy
(P1) and (P2). In this context, there are infinitely many such collections
which additionally satisfy (P3), yielding infinitely many invariant series for
the negative-definite case. However, to obtain invariance under the Neu-
mann move (C) imposes the additional condition (P4) on the collections P,
yielding only finitely many invariant series for plumbing trees in general.
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6. Examples

We discuss here the series Y (q) in the cases of plumbing trees with either
one or two vertices of degree at least 3.

From Theorem 5.1(i) and Remark 3.5, we may assume P = K, the Kostant
collection from §2.2. We will thus omit P from the notation.

6.1. Brieskorn spheres. We compute here the series YS,a (q) in the case
of Brieskorn homology spheres for S ⊂ Ξ of size one. We show that all such

series are identical and equal to the series Ẑa(q) computed for Q = A1 in
[GM] and for arbitrary Q in [Par]. Thus the fact that their average recovers

Ẑa(q) is trivially satisfied in this case.
For this, we use the fact that a Brieskorn homology sphere is realized as

a negative-definite manifold constructed from a star-shaped plumbing tree
Γ with central vertex of degree 3. Since Γ is negative definite, one has π = 0
and σ = −s.

Select a root lattice Q. As Γ has only one vertex of degree ≥ 3, the set
of Weyl assignments from §3.1 is Ξ ∼= W . Choose an order of the basis of
L′ ⊗Z Q ∼= Qs so that for f ∈ Qs one writes

f = (f0, f1, f2, f3, . . . )

with f0 corresponding to the vertex of Γ of degree 3 and f1, f2, f3 to the
three vertices of degree 1.

Since H1(M ;Q) = 0, one has that a = δ from (1.2) is the unique gener-
alized Spinc-structure. This is δ = (−1, 1, 1, 1, 0 . . . , 0)⊗ 2ρ. We will omit it
from the notation.

For a subset S = {x} ⊂W ∼= Ξ, the series from (3.5) is

(6.1) Yx(q) = q−
1
2

(3s+trB)〈ρ,ρ〉
∑
f

cΓ,x(f) q−
1
8
〈f,f〉

where the sum is over f ∈ δ + 2BQs ⊂ Qs. Recall the definition of the
coefficients cΓ,x(f) in (3.6). Since Γ is a star-shaped tree with three legs,
the sum over f in (6.1) can be restricted to those f which are of the form

f = (γ, 2w1(ρ), 2w2(ρ), 2w3(ρ), 0, . . . , 0) ∈ Qs

with γ ∈ 2ρ+ 2Q and w1, w2, w3 ∈W

as cΓ,x(f) vanishes otherwise. Next, we compute the contribution of each
entry of f to cΓ,x(f). Writing K(z) =

∑
α∈Q d(α) zα, from (2.10) one has

Kx(z) = (−1)`(x)
∑
α∈Q

d
(
x−1α

)
zα.

Hence for a fixed x ∈ S, the contribution of f0 = γ is (−1)`(x) d
(
x−1γ

)
.

Applying (2.6), the contribution of fi = 2wi(ρ) for i = 1, 2, 3 is (−1)`(wi).
Multiplying these contributions, one has

cΓ,x(f) = (−1)`(xw1w2w3) d
(
x−1γ

)
.
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Figure 5. The Brieskorn sphere Σ(2, 3, 7).

Thus the series becomes

Yx(q) = q−
1
2

(3s+trB)〈ρ,ρ〉
∑
f

(−1)`(xw1w2w3)d
(
x−1γ

)
q−

1
8
〈f,f〉.

By making use of the symmetry

f 7→ x−1f =
(
x−1γ, 2x−1w1(ρ), 2x−1w2(ρ), 2x−1w3(ρ), 0, . . . , 0

)
and the fact that 〈f, f〉 = 〈x−1f, x−1f〉 for x ∈W , the series can be rewritten
as

Yx(q) = q−
1
2

(3s+trB)〈ρ,ρ〉
∑
γ∈Q

w1,w2,w3∈W

(−1)`(w1w2w3)d (γ) q−
1
8
〈f,f〉.

This uses that `(x) = `(x−1) and thus `(xw1w2w3) ≡ `(x−1w1x
−1w2x

−1w3)
mod 2.

As a first observation, the right-hand side of this formula is independent
of x. It follows that the series Yx(q) for x ∈W are all equal. Moreover, this

formula recovers the series Ẑ(q) computed for Brieskorn homology spheres
in [GM] and [Par].

The fact that all the series Yx(q) are identical in this example is due to
the symmetry of the Weyl group and the fact that Ξ ∼= W here. For more
details on this symmetry, see the similar case treated in §6.3. For an example
where the series Yx(q) vary with x ∈ Ξ, see §6.4.

6.2. The Brieskorn sphere Σ(2, 3, 7). Here we consider the case M =
Σ(2, 3, 7) in detail. This is obtained from the negative-definite plumbing
tree in Figure 5. For Q = A1, one has

Yx(q) = q1/2
(
1− q − q5 + q10 − q11 + q18 + q30 − q41 + q43 − q56 +O(q76)

)
and for Q = A2, one has

Yx(q) = q2
(
1− 2q + 2q3 + q4 − 2q5 − 2q8 + 4q9 + 2q10 − 4q11 +O(q13)

)
.

Both formulae are independent of x ∈ Ξ and recover the series Ẑ(q) com-
puted in [GM] and [Par], respectively.
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Figure 6. A non-Seifert manifold.

6.3. Seifert manifolds. Here we consider the case when M is more gen-
erally a Seifert manifold. In this case, the plumbing tree Γ consists of a
star-shaped tree. Furthermore, we assume that (the class of) a is invariant
under W (e.g., when a is the unique self-conjugate Spinc-structure on M).

As for Brieskorn spheres, Ξ ∼= W . From (3.8) and the assumption that
w(a) = a for all w ∈ W , it follows that the series Yx,a(q) for all x ∈ W are

identical and thus equal to Ẑa(q), as for Brieskorn spheres.

6.4. A non-Seifert manifold. Here we consider the 3-manifold M ob-
tained from the negative-definite plumbing tree in Figure 6.

One has H1(M ;Z) = Z13. For simplicity, we do not separate between the
representatives of the various Spinc-structures, i.e., we consider the series

Ẑtot(q) :=
∑

a∈Spinc(M)

Ẑa(q), YS,tot (q) :=
∑

a∈Spinc(M)

YS,a (q) .

For Q = A1, the first few terms of the series Ẑtot(q) for M have been
computed in [GPPV, (3.161)]:

Ẑtot(q) =
1

4

(
q−1/2

(
2− 2q + 2q2

)
+ 2q5/26

(
−3 + 2q + 2q2 − 4q3

)
+2q7/26 (4 + q) + 2q−7/26

(
−3− 3q2

)
+2q−11/26

(
−1 + 2q − 2q2 + 4q3

)
+ 2q−5/26

(
2 + 2q2 − q3

)
+2q−15/26

(
−1− 2q + 2q2

)
+O

(
q85/26

))
.

Here O(qx) stands for qx times a series in non-negative powers of q. (The
series is approximated to a higher degree in [GPPV]. Due to an evident typo,
the factors +2 multiplying the rational powers of q, including the sign, are
missing in [GPPV].)

The series Ẑtot(q) decomposes as the average of the series YS,tot (q) for
S ⊂ Ξ of size one. As Γ has exactly two vertices of degree ≥ 3 and no forcing
bridges, the set of Weyl assignments from §3.1 is Ξ ∼= W 2. Choose an order
of the vertices of Γ and write ξ ∈ Ξ as ξ = (x, y) with x and y being the
assignment of ξ to the left and right vertices of degree 3, respectively.
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For Q = A1, one has ξ ∈ {±1}2. From (3.8), one has

Y(1,1),tot (q) = Y(−1,−1),tot (q) , Y(1,−1),tot (q) = Y(−1,1),tot (q) .

A direct computation yields

Y(1,1),tot(q) = q−1/2
(
1 + q2

)
+ q5/26 (−2) + q−11/26

(
2q3
)

+ q−5/26 (−2q)

+q−15/26
(
2q3
)

+O
(
q85/26

)
and

Y(1,−1),tot(q) = q−1/2 (−q) + q5/26
(
−1 + 2q + 2q2 − 4q3

)
+q7/26 (4 + q) + q−7/26

(
−3− 3q2

)
+q−11/26

(
−1 + 2q − 2q2 + 2q3

)
+q−5/26

(
2 + 2q + 2q2 − q3

)
+q−15/26

(
−1− 2q + 2q2 − 2q3

)
+O

(
q85/26

)
.

These series satisfy the expected identity

Ẑtot(q) =
1

4

(
Y(1,1),tot(q) + Y(1,−1),tot(q) + Y(−1,1),tot(q) + Y(−1,−1),tot(q)

)
.
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