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ABSTRACT. RNA molecules are known to form complex secondary structures in-
cluding pseudoknots. A systematic framework for the enumeration, classification
and prediction of secondary structures is critical to determine the biological sig-
nificance of the molecular configurations of RNA. Chord diagrams are mathemat-
ical objects widely used to represent RNA secondary structures and to analyze
structural motifs, however a mathematically rigorous enumeration of pseudoknots
remains a challenge. We introduce a method that incorporates a distance-based
metric 7 to analyze the intersection graph of a chord diagram associated with a
pseudoknotted structure. In particular, our method formally defines a pseudoknot
in terms of a weighted vertex cover of a certain intersection graph constructed
from a partition of the chord diagram representing the nucleotide sequence of the
RNA molecule. In this graph-theoretic context, we introduce a rigorous algorithm
that enumerates pseudoknots, classifies secondary structures, and is sensitive to
three-dimensional topological features. We implement our methods in MATLAB
and test the algorithm on pseudoknotted structures from the bpRNA-1m database.
Our findings confirm that genus is a robust quantifier of pseudoknot complexity.

1. INTRODUCTION

Ribonucleic acid (RNA) is a molecule essential to many functions of life, notably
gene expression, cellular communication, and the storage and transfer of genetic
information. The primary structure of RNA refers to the sequence of its four ni-
trogenous bases adenine (A), guanine (G), cytosine (C), and uracil (U), attached
along a sugar-phosphate backbone [14]. It is well known that RNA molecules fold
into a variety of secondary and tertiary structures related to their natural functions
via complementary Watson-Crick base pairings and other pairings [36, 14]. Common
secondary structure motifs include hairpin loops, stems (i.e. ‘stacks’), bulges, inte-
rior loops, multiloops, single-stranded regions, and pseudoknots [22], [12], Figure 1]
(see Figure . A pseudoknot is a secondary structure motif representing a three-
dimensional folding pattern. Pseudoknots were first recognized in the study of the
turnip yellow mosaic virus [24] [I3], but the term was coined in [31]. The simplest
type of pseudoknotted structure is an H-type pseudoknot, formed when nucleobases

along the loop of a hairpin bond with nucleobases elsewhere along the sequence [6].
1



2 RAYAN IBRAHIM AND ALLISON H. MOORE

A variety of pseudoknot motifs have been characterized including H-type, K-type,
L-type, and M-type motifs [I8, [I].

RNA secondary structures may be represented graphically with chord diagrams,
objects common in enumerative combinatorics and topology. In the representation
of an RNA secondary structure, bonded pairs are indicated by arcs (‘chords’) along a
line segment or circle. A precursor to a chord diagram representing secondary struc-
tures appears in [33] as a connection to predictive models using base-pairing matrices
[32]. There, RNA secondary structures were defined as simple planar graphs on a
set of n labeled points such that a path along the n points represents the primary
structure, with other edges representing bonds between bases [33, Definition 2.1].
These planar graphs correspond to crossingless chord diagrams, which have since
been studied extensively as models for secondary structures [5, 23, 35, B4, 211, 26].
Pseudoknots occur only when the corresponding chord diagrams contain chords that
cross each other. Despite the relative simplicity of a chord diagram, there is no
greed-upon method for quantifying the complexity of RNA pseudoknotting. A naive
count of crossings overemphasizes contributions from helical stacking, and different
methods for reducing parallel bonds may yield different enumerations of pseudo-
knots. Moreover, existing methods may ignore some topological features of the 3D
conformation. We investigate these discrepancies in Sections and [3.1]

Our goal is to construct a mathematically rigorous and topologically robust frame-
work for quantifying pseudoknot complexity in RNA, presented in the familiar lan-
guage of graph theory and building upon conventions implicitly assumed in the
bpRNA method [12] and bpRNA-1m database [11]. The bpRNA-1m database aggre-
gates over 100K RNA secondary structures from seven sources [9, 137, 25], [17, 8 [15] 3].
Internal annotation routines and the enumeration of pseudoknots and other struc-
tural motifs are conducted via the algorithmic tool bpRNA [I2]. This database
provides the primary test case for our graph-theoretic procedures. The strategy pre-
sented here verifies the reproducibility of both our methods and those of the bpRNA
tool [12], while illustrating discrepancies resulting from topological conformations.

Section [2| develops a mathematical formulation of pseudoknotting using chord di-
agrams and intersection graphs. The relevant graph theoretical background is re-
viewed in Section and we prove a relationship between vertex cover numbers
and the genus of a chord diagram in Theorem [2.6, In Section [2.2] we investigate
precedent theories of pseudoknotting and convey these notions into our mathemati-
cal framework. Specifically, we use a weighted vertex cover of an intersection graph
constructed from a partition of the chord diagram corresponding to an RNA mole-
cule to give a precise enumeration of pseudoknots. In Section [3], we introduce the 7-
reduction algorithm, which systematically reduces the complexity of a chord diagram
to quantify pseudoknots in a robust manner that takes into account 3D topological
features, including nestings, crossings, and a distance-based threshold 7. An explicit
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MATLAB implementation of our algorithm is provided in Github [I6]. Examples
[2.11 and in this section demonstrate discrepancies in the existing methodology
that are corrected by our current methods. In Section [l we present the results of our
analyses. We report quantities of pseudoknots, improving upon previous methods.
In [5] it was shown that these basic motifs constitute the irreducible pseudoknots
of genus equal to one (see Section for a discussion on genus). Moreover, they
posit that the topological genus of a chord diagram provides a classification of RNA
secondary structures with pseudoknots. Our analysis in Section together with
Theorem confirms that even with additional topological considerations, genus is
a robust classifier of pseudoknot complexity.

2. COMBINATORIAL THEORY

2.1. Chord Diagrams. A linear chord diagram D is a set of n points on an oriented
line segment together with a (partial) matching of the points. Circular chord dia-
grams are obtained by joining the endpoints of the segment; however we will restrict
to linear chord diagrams throughout. We denote chords as pairs ¢ = (¢,r), where
¢ and r denote left and right endpoints, respectively. Because chord diagrams are
matchings, ¢ < r, and no two chords share an endpoint. By convention, a set of
chords is indexed by left endpoints.

Definition 2.1. For any two chords ¢; and ¢y, there are three possibilities:
(a) ¢; and ¢y form a crossing: €4 < ly <11 < T9.

(b) ¢; and ¢ form a nesting: ¢4 < ly < 1y < 717.
(c) ¢; and ¢y are independent: {1 <11 < ly < T9.

Further, a k-crossing is a set of chords (¢1,71), (¢2,72), ..., ({x, %) such that ¢; <
Uy < oo <l <11 <19 < - <7 Ak-nesting is aset of chords (¢1,71), (la,72), ..., (k, %)
such that (1 < ly < -+ <l <71 <rp_y < --- < 71q.

TN

1 2 3 4 5 6 1 2 3 4 5 6

FiGURE 1. Top left: A 3-nesting. Top right: A 3-crossing. Bottom
left: Two 2-crossings. Bottom right: A 2-nesting and two 2-crossings.

The following definitions will become useful in formalizing pseudoknots in chord
diagrams. We use the notation (a, b) for the open interval between a and b.
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Definition 2.2 (Chord Obstructed). Let ¢ and ¢ be chords and let U = (¢, ¢")U(r, 1),
i.e. U can be thought of as the set of bases between the left endpoints and right
endpoints of ¢ and /. We say ¢ and ¢’ are chord obstructed if there is some chord ¢’
such that either ¢” € U or v € U. A set of three or more chords S = {cy,¢o, ..., 1}
is chord obstructed if consecutive chords ¢; and ¢;; are chord obstructed for some
i=1,2,...  k—1.

Definition 2.3 (Segment). A segment of a chord diagram D is a maximal nonempty
set of chords S = {¢1,¢9,..., ¢} forming a k-nesting such that S is not chord ob-
structed.

Note that the set of segments S partitions the set of chords C. In crossingless
chord diagrams, there is a natural poset structure on the set of segments defined by
S < S§"if S is nested in S.

The intersection graph G of a chord diagram D is the graph whose vertices are
the chords of D, and such that two vertices in GG are adjacent if their corresponding
chords in D form a crossing. The use of intersection graphs is well established, see
for example [19]. Variations on the concept of an intersection graph arise numerous
times in the biology literature under different names. For example, in [18], there
is the notion of a conflict graph, whose vertex set comprises helices in the RNA
structure and edges signify the crossing of chords corresponding to the helices. In [29]
the concept of an element-contact graph is introduced, in particular the stem-loop-
contact graph (SLCG) [29, Figure 7]. The segment graph of the bpRNA database
[12] is another such example.

We will investigate the following graph theoretic invariants with respect to RNA
structures in Section [l An independent set is a set of vertices such that no two
vertices in the set are adjacent. The maximum cliqgue number w(G) is the maximum
size of a complete subgraph of G. A wvertex cover of a graph G is a set A C V(G)
such that for every edge xy € FE(G) either x € A or y € A. The vertex cover
number of a graph G, denoted 5(G), is the number of vertices in a minimum vertex
cover. The weight of a vertex cover A in a vertex-weighted graph G is >, _, w(v).
Note that a minimum weight vertex cover of a weighted graph G is not necessarily
a minimum cardinality vertex cover. (Consider for example the path graph P; with
weights 1,5,3).

If C is a vertex cover of G, then the graph G —C' contains no edges, as by definition
every edge of G must have an endpoint in C'. Similarly, if I is an independent set
of G, then every edge of G has at least one end point in G — I. Thus we have the
following observation.

Observation 2.4. Let G be a graph and let I and C' be an independent set and vertex
cover respectively. Then V(G)\ I is a vertex cover, and V(G) \ C is an independent
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set. Moreover, the complement of a minimum weight vertexr cover is a mazximum
weight independent set.

Definition 2.5 (Genus). The genus of a chord diagram D, denoted ~(D), is half of
the rank of the adjacency matrix of the intersection graph with Z, coefficients [20].

Equivalently, the genus of a chord diagram is equal to the topological genus of the
surface obtained by regarding the chord diagram as a band surgery diagram [5]. One
way to calculate the genus g of a chord diagram D is via the formula

P-L
777
where P is the number of chords (or base pairs) and L is the number of closed
loops in the corresponding double-line diagram [5] (see Figure [2]) For a graph G we
define rank(G) (resp. rank,(G)) to be the rank of the adjacency matrix of G with
coefficients in R (resp. coeflicients in F,,).

F1GURE 2. Two methods of calculating the genus of a given chord diagram.

Theorem 2.6. Let D be a chord diagram and let G be the intersection graph of D.
If G is acyclic, then v(D) = B(G).

Proof. Because [(G) and v(G) are additive over disjoint unions, without loss of
generality we may assume G is a tree of order n. The statement is easily verified for
n < 4. We will use induction on n. Let T be a tree on n > 5 vertices with adjacency
matrix A. If T has a vertex v with at least two leaf neighbors, then we remove a
leaf ¢ adjacent to v to form T”. By the induction hypothesis, ranky(7")/2 = 5(T").
Adding back ¢ to form T', we have ranks(7") = ranks(7") as the row corresponding to
¢ in A is identical to the rows corresponding to the other leaf neighbors of v. Note
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in a graph, for any vertex with a leaf neighbor, there is a minimum vertex cover
containing that vertex. Thus, we have 5(T) = 5(T").

Now we assume every vertex of 7" has at most one leaf as a neighbor. Then
there is some leaf ¢ with a neighbor v of degree two; to identify such a vertex v,
find a maximum path and let v be adjacent to a leaf. Let {{,w} = N(v). Let
T" =T — {v,£}. By the induction hypothesis, v(T") = 5(1").

First we claim 8(T") = S(1")+ 1. Indeed, no minimum vertex cover of 7" will cover
the edge v/, so T requires one more vertex in addition to a minimum vertex cover of
T’ to cover all edges of T.

Next we claim that ranky(7") = ranky(7”) + 2. The adjacency matrix of 7" is given
by

*
o
o

0
0
1
0

A

R
N )
/N0 - 0
where the upper left block corresponds to the adjacency matrix A’ of T7'. Applying

the row operation row w — row £ = row v and column operation colw — col ¢ = colw
we obtain the matrix

oHox -
e [V P

w v/

* |0 0

_ <[00

B wlx -+ %« 0]0 0

v{0 -+ 0 0[]0 1

¢\0 --- 0 0|1 O
We have that ranks(A) = ranky(B) = ranks(A’) + 2, therefore v(T) = v(1") + 1.
This completes the induction. 0

Remark 2.7. In general, for acyclic graphs v(G) # B(G). In particular, for complete
graphs, one may observe that 3(K,) —v(K,) =k — [%] -

Finally, we remark that the genus of a chord diagram D containing an r-nesting
C ={cy,--+, ¢} that is not chord obstructed is equal to the genus of the diagram
with  — 1 chords of C removed, i.e. D — {cg,--,¢.}. The rank of a matrix can be
thought of as the maximum number of linearly independent rows or columns in the
matrix. It can be seen from the adjacency matrix A of the intersection graph that
Ca, ..., C. correspond to identical rows in A, and are thus linearly dependent.
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2.2. Pseudoknotted Structures. Analyzing the role of pseudoknots in various
RNA processes motivates the study of pseudoknot complexity for comparison, char-
acterization of motifs, and prediction of RNA secondary structure [12], B, 23, [30].
Practical definitions of a pseudoknot vary in the biological literature [5], 23]. Be-
cause we will ultimately be interested in quantifying pseudoknots aggregated by the
bpRNA-1m database [12], we start from definitions presented there. In this data-
base, a pseudoknotted structure is characterized as having base pair positions that
cross in the sense of Definition [2.1)(a); the working definition of a ‘pseudoknot base
pair’ is one belonging to a minimal set of base pairs that results in a pseudoknot-free
structure once removed. There is some ambiguity in these concepts; for example,
a pair of kissing hairpins with intersection graph weighted [a, a + b, b] demonstrates
that such a minimal set is not unique. Further ambiguities may result from helices
formed in secondary structures (see Section . By default, the number of pseudo-
knots in any given secondary structure reported in [12] is the number returned by an
algorithm that identifies some minimal set of pseudoknot base pairs. We review their
algorithm, and translate corresponding notions of pseudoknotting into the language
of chord diagrams, as follows.

To make the notion of a pseudoknot, and more specifically the annotation of
multiple pseudoknots, more precise, [12] introduces the notion of a segment of RNA
secondary structure. An RNA segment is described as a region of duplexed RNA,
possibly containing bulges or internal loops. In combinatorial terms, RNA segments
correspond to the segments s € S of the chord diagram D representing the secondary
structure, as in Definition [2.3] The segments partition the set of chords C, and
ordering the base sequence from the 5-end to 3’-end indexes each segment by its
leftmost endpoint. In [I2], the following is observed; we provide a restatement in
terms of chord diagrams.

Theorem 2.8 ([12]). Let S be the segment partition of a linear chord diagram D
and let S,S" € S. If there are chords ¢ € S and ¢ € S’ such that c and ¢’ are crossed,
then any pair of chords from S and S’ cross.

Proof. Recall that a segment of size k is a maximal k-nesting in which pairs of
consecutive chords are not chord obstructed. Let & be a segment partition of D and
let S,5" € S where S < S’ in the indexing of segments by left endpoints. Let ¢ € S
and ¢ € S’ such that ¢ and ¢’ cross. Let £,,.« be the maximum left endpoint of S
and 7y, and 7., be the minimum and maximum right endpoints of S respectively.

By the left endpoint indexing, all left endpoints of chords in S’ must be greater
than .. If some left endpoints of S” are less than ry;, and some greater, then S’
is chord obstructed by the right endpoints of S. If all left endpoints of S are greater
than 7y, either S is chord obstructed or no chords of S and S’ cross. Thus, all left
endpoints of S" must lie between f,;, and 7,;,. Since ¢ and ¢ cross, and S is not
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chord obstructed, it must be that ' > r.,., i.e. ¢’ crosses every chord in S. No other
right endpoint of S’ is less than r,.,, as otherwise S or S’ are chord obstructed.
Thus any pair of chords from S and S’ cross. U

In other words, Theorem says that two segments s, s’ € S cross whenever any
chords ¢ € s, € §' cross. The segment graph Gs of a chord diagram is a variation
on an intersection graph whose vertex set is the set of segments, where two vertices
are adjacent if their segments cross [12]. Vertices in Gs are weighted by the number
of chords contained in their corresponding segments. The terminology PK-segment
refers to any segment s € S that crosses any other segment. Let Hs C Gs be the
subgraph with isolated vertices removed, referred to as the PK-segment graph in [12].

In [12], pseudoknotted structures are identified by finding a maximum weight
independent set I in Hg via a heuristic approach, with an exact algorithm used
in the specific case of components which are paths. As we have formalized above,
the set P = V(Gs) — I is a minimum weight vertex cover of Gs. That is, P is a
set of segments of minimum cardinality in C' that when removed from D leave a
pseudoknot-free structure.

We may now formally quantify the size of a pseudoknotted structure according to
the conventions of the bpRNA-1m database, as implied by the algorithms of [12].

Definition 2.9. (Pseudoknotted Structures - bpRNA Segment Graph Method) A
secondary structure is pseudoknotted if its segment graph contains at least one edge
and is called pseudoknot-free otherwise. The number of pseudoknots in a pseudoknot-
ted structure is the minimum cardinality over all vertex covers of minimum weight
of the segment graph.

Any segment contained in a minimum-cardinality minimum-weight vertex cover
may be called simply ‘a pseudoknot.” It is important to note that in [12], the number
of pseudoknots is not the number of chords in the corresponding cover, in general.

Example 2.10. Figure|3|shows the chord diagram representing the secondary struc-
ture of tRNA (76-MER) found in Escherichia coli with 8 segments. The PK-segments
are {2,3,4,5,6,8}. The maximum weight independent set in Hg is {3,8}. The min-
imum weight vertex cover in Gg is {2,4,5,6}, indicating four pseudoknots in this
structure according to the conventions of [12].

2.3. Crossingless Secondary Structures. Let D be a chord diagram with no
crossings, and let S be the segment partition of D. We say an unpaired base is
nested in a segment S if it is between the left and right endpoints of the innermost
chord of S. A stem in D is a k-nesting with no other bases between the endpoints of
any two consecutive chords. Segments are composed of stems. Let S be a segment
and let ¢ and ¢ be two consecutive chords in a segment S, with ¢ < ¢'. If there
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F1GURE 3. (Top) Linear chord diagram of transfer RNA molecule of

type 76-MER from Escherichia coli (PDB_652) with segments labeled.
(Bottom) Segment graph Gs with weights.

are sequences of unpaired bases in the intervals (¢,¢') and (r,7’), i.e. ' —¢ > 2 and
r —r’ > 2, then those two sequences together comprise an interior loop. If exactly
one of (¢,¢) or (r,r") contains a sequence of unpaired bases, that sequence is a bulge.
If two or more segments 7 are nested in S, then there is a multiloop composed of all
unpaired bases b nested in S and not nested in any segment in 7. Note multiloops
may have length zero (that is, a multiloop may be the empty set). The exterior
loop of D is the set of all unpaired bases which are not nested in any chord. If by is
the first paired base and by is the last paired base in the base sequence, the set of
unpaired bases less than by and greater than by are a part of the exterior loop called
the dangling ends. The exterior loop can be thought of as the multiloop gained from
an imaginary base pair bonding of the 5-end and 3’-end, under which all chords are
nested. The crossingless secondary structures are illustrated in Figure

2.4. Qualitatively Similar Pseudoknotted Structures. Identifying nested chords
in a chord diagram is a common strategy for reducing the complexity of the combi-
natorial analysis of secondary structures because it allows for the reduction of helices
to a single chord, or alternatively to a single vertex in an intersection graph. For
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Hairpin
Multiloop
Bulge

Interior Loop

Exterior Loop

Dangling End
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FIGURE 4. An illustrated example of secondary structures in a cross-
ingless chord diagram. There are eight stems in this structure

example, nested chords are identified as segments in [12] (Definition above), as
‘stacks’” in [5], as ‘shadows’ in [23], or as edges in tree diagrams of pseudoknot-free
structures in [2] and elsewhere. Such reductions also preserve some invariants of
interest, for example the topological genus (see Definition and [5]). In contrast
to r-nestings, r-crossings in chord diagrams are typically left untouched by simplifi-
cation algorithms. Consequently, the existence of an r-crossing implies the existence
of at least r pseudoknots according to the conventions of [12].
Consider the following two examples.

Example 2.11 (Discrepancies due to weights). Consider two weighted segment
graphs, each isomorphic to P3, with weights (1, 5,3) and (1, 5,4), respectively. Such
graphs represent nearly identical K-type secondary structures which differ only by a
single bonded pair in the third stem. By [12] and Definition the minimum cardi-
nality over vertex covers of minimum weight determines the number of pseudoknots:
2 and 1, respectively. Note that the addition of one pair results in a decrease in the
number of pseudoknots.

Example 2.12 (Discrepancies due to r-crossings). Consider a nucleotide sequence
that contains a repetitious subsequence appearing in reverse. For an example, we
follow Figure [f} This structure contains subsequence o = X'Y'Z’, complementary
sequence 0’ = ZY X, and reverse complementary sequence & = XY Z. Bonds formed
between ¢ and ¢’ result in an r-nesting (Figure[5[A)), whereas bonds formed between
o and & form an r-crossing (Figure [fB)). We assume here that either set of bonds
is possible. In particular, the parity of number of half-turns in the helical stem
may determine whether ¢’ or @’ is nearer to ¢ in a 3D conformation. Despite the
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XxXY'z ZY X XY Z xXy'z ZY X XY Z

FI1GURE 5. Two closely related instances of bonding between two hairpins

heuristic similarity of the resulting pseudoknotted structures, their segment graphs
differ significantly. By the conventions of [12] (Definition the two structures are
of pseudoknotting size 1 and 3, respectively. Moreover, the difference increases with
additional base pairing in the hairpin stem.

The general observation is that variances in bonding from spatial conformations
(e.g. helical twisting) may result in a quantification of pseudoknotting that is artifi-
cially high. Of 30 structures exhibiting the most pseudoknotting in Table[I] there are
28 that contain both a complementary and reverse complementary sequence (pos-
sibly not contiguous) near the site of the 3-crossing. One example RNA structure
involving a 3-crossing and 5-nesting is bpRNA_CRW _55315. This structure contains
a 3-crossing with left bases GCA at indices 2107, 2108, and 2112 and right bases
AGU at indices 2164, 2165, and 2167, which is the reverse of the triple UGA at
indices 2162, 2163, and 2164.

3. METHODS

To further reduce complexity and to more effectively relate similar secondary struc-
tures, we propose in this section an alternative method for quantifying the size of a
pseudoknotted structure and a new simplification algorithm that identifies both r-
crossings and r-nestings in chord diagrams. In addition to handling complexity issues
arising from r-crossings, this method will also eliminate some discrepancies result-
ing from weighted graphs and include a parameter accounting for distance between
nucleotides.
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3.1. The 7-Segment Graph Method. In this subsection, we give a partitioning
procedure that identifies r-crossings in a manner similar to that of r-nestings. We
implement the procedure in an algorithm that incorporates an additional distance
parameter 7 in terms of the nucleotide sequence.

An augmented segment of a chord diagram is a maximal nonempty set of chords
S = {cy, ¢, ..., ¢} forming a k-nesting or a k-crossing which is not chord obstructed.
Revisiting Examples and above, notice that an intersection graph G 4 pro-
duced with augmented segments would yield two pseudoknotted structures of size 1
in Example 2.11] and two structures of size 2 in Example [2.12]

The chord distance between two chords ¢; = (¢1,71) and cg = (lo,19) is

d(cy, c9) = max{|l; — ls|, |r1 — ra|}.

We say that a pair of nested or crossed chords ¢y, ¢y are 7-near if d(ci,c) < 7
and ¢; and ¢y are not chord obstructed. A k-crossing or k-nesting {ci,...,cx} is
T-near if for each i = 1,...,k — 1 we have ¢; and ¢;;, are T-near. A T-segment of a
chord diagram is a maximal nonempty set of chords S = {ci, s, ..., ¢} forming a
T-near k-nesting or a 7-near k-crossing. As with segments or augmented segments,
the set of 7-segments S, also partitions the set of chords C. We have the following
statement.

Theorem 3.1. Let S, be the T-segment partition of a linear chord diagram D and
let S1,S, € S.. If there are chords ¢ € Sy and ¢ € Sy such that ¢ and ¢ are crossed,
then for every pair ¢ € Sy and ¢ € Sy, the chords ¢ and ¢ are crossed.

Proof. The proof is analogous to that of Theorem O

Generalizing the segment graph, we may now define the 7-segment intersection
graph G to be the weighted graph whose vertex set is the set of T-segments, where
two vertices are adjacent if the 7-segments cross. When 7 = 0, define G,— := Ggs.
When 7 = oo, the graph G4 := G is the intersection graph of the augmented
segment partition. The notation D, will indicate the chord diagram corresponding
to G, in which each 7-segment corresponds to a chord. As with Gs and G4 we use
the notation Dg and D 4 analogously. We may now formally revise the method for
quantifying the size of pseudoknotted structures in RNA.

Definition 3.2. (Pseudoknotted Structures - 7-Segment Graph Method) A sec-
ondary structure is T-pseudoknotted if GG, contains at least one edge and is called
pseudoknot-free otherwise. For 7 > 1, the number of pseudoknots is the minimum
cardinality of a vertex cover of G,. For 7 = 0, the number of pseudoknots is the
minimum cardinality over all vertex covers of minimum weight of the segment graph.

The definition in the case of 7 = 0 is explicitly made to agree with the conventions
of [12].
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F1GURE 6. Different tau-partitions of bpRNA_PDB_652 for 7 = 0,1,
and co.

Example 3.3. Figure [} The maximum distance between any two non-chord ob-
structed chords is three. That is, the 7-segment partition is the same for all 7 > 3.
This RNA structure has four pseudoknots according to the conventions of [12], and
two pseudoknots according to Definition [3.2] The main difference comes from chords
(19,56) and (20, 57) becoming part of the same segment for 7 large enough.

Algorithm [I] in the next section implements the 7-segment partition procedure.
The input to the algorithm is a chord diagram with set of chords C' (a list of base
pairs indexed by left endpoint) and a non-negative integer parameter 7. Selecting
a pair of chords ¢, € C', the algorithm loops to build the 7-segment containing c.
If 7 = 0, it checks whether the ¢, ¢ are nested and not chord obstructed. If 7 > 0,
the algorithm checks whether ¢ and ¢ are T-near and not chord obstructed. If the
criterion is met, ¢’ is added to the segment containing ¢ and the next pair is selected.
If not, the segment is closed. The next unvisited pair of chords are then selected and
the process repeats to build the next segment until all chords have been exhausted.

The Github repository [16] contains Algorithm [l implemented in MATLAB in the
function called findSegments.

3.2. Pseudoknot Quantification Process. Here, we apply the definitions and
algorithm above to the bpRNA-1m(90) database [12]. The database bpRNA-1m(90)
is a subset of bpRNA-1m restricted to the 28,370 RNA secondary structures with
less than 90% sequence similarity. This database contains 3,320 RNA structures
reported to contain at least one pseudoknot, i.e. structures whose segment graphs
contain at least one edge, with a total of 7,164 pseudoknots reported according to
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Algorithm 1 Tau-Segment Partition

Require: C' = {cy,co,...,cp} = {(l1,1m1), (la,72), .oy (Upyi) ), T
Ensure: C-

S« {(ty,m)}

if 7 > 0 then
for1<i<k-1do
d <+ maX{Mi — £i+1|7 |Ti — Ti+1|} > Distance.

if d <7 and —isChordObstructed(c;, ¢i+1) then
S append(S, (£i+17 Ti-l—l))

else
C; < append(C;, S) > Store Segment
S« {cit1} > Initialize new segment
end if
end for

else
forl1<i<k—-—1do
if isNested(c;, ¢;+1) and = ChordObstructed(c;, ¢;+1) then
S <« append(S, ¢i+1)

else
C; + append(C;, S) > Store Segment
S« {cit1} > Initialize new segment
end if
end for
end if
C; + append(C;, S) > Account for final segment.

Definition (the prior bpRNA Segment Graph Method). To analyze the data, we
implement both the segment and 7-segment graph methods and analyze secondary
structures via MATLAB code [16].

Chord diagrams associated with RNA structures are stored as MATLAB arrays.
The input to the Tau-Segment Partition algorithm is the set of chords C' from a
chord diagram D and an integer parameter 7. To carry out any of the above methods,
we first call the findSegments function to create a segment partition of the chord
diagram. The parameter 7 determines which segment partition is created, with
7 =0,00,1 < 7 < o0 corresponding to the segment partition, augmented segment
partition, and 7-partition, respectively. See Figure [6]

Depending on whether the segment partition contains any segments which cross
each other, one of two subroutines is implemented. If the segment partition contains
no segments which cross, then the secondary structures of the chord diagram are
analyzed by the function classifyBases. This function outputs the primary base
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sequence with each base classified as belonging to one of the secondary structure
motifs given in Section [2.3]

If the segment partition contains segments which cross, then we construct the
corresponding weighted segment graph with the function makeSegmentGraph. The
pseudoknots of the chord diagram are then identified and analyzed by the findPKs
process:

(1) Find list of all maximal independent sets I.
(2) If r=0:
(a) Calculate weight of each set I € 7.
(b) Subset all maximum weight sets Z' C 7.
(¢) Subset maximum cardinality maximum weight sets Z"" C 7' C 7.
(3) If 7 > 0:
(a) Subset all maximum cardinality sets Z' C 7.
(b) Calculate weight of each set I € Z'.
(¢) Subset maximum weight maximum cardinality sets 7" C 7" C 7.
(4) Dualize the independent sets Z” to vertex covers P.
(5) Select first vertex cover P € P with respect to the lexicographical ordering
from the indexing of segments by left endpoints.

Step (1) applies the Bron-Kerbosch algorithm [7, 4] to find all maximal cardinality
independent sets. The importance of the lexicographical ordering in step (5) will
become apparent after Example below.

The output of this process is a vertex cover P. In the case that 7 = 0, this vertex
cover represents a pseudoknotted structure by Definition 2.9, where the number of
pseudoknots is quantified by the minimum cardinalities of vertex covers of minimum
weight. In the cases where 7 > 0, the minimum-weight minimum-cardinality vertex
cover represents a T-pseudoknotted structure by Definition [3.2]

After identifying pseudoknots, one may still want to analyze the crossingless sec-
ondary structures of the RNA molecule. Therefore the last part of the process re-
moves all chords which compose a pseudoknot, leaving a set of chords C' = C'— P. In
the case of 7 = 0, the set of chords C” is crossingless. In the case 7 > 0, it may be that
chords in C” cross, however C’ comprises independent crossings and nestings, i.e. no
two segments cross in the augmented segment partition of C’. Setting 7 = oo (which
corresponds to an augmented segment partition), we enter the secondary structure
classification subroutine (classifyBases) assessing secondary structure using the
definitions given in Section , with independent crossings handled as nestings (and
thus a type of stem).

This entire process is summarized in a flow chart (see Figure [§]) in the Appendix.

Example 3.4 (Lexicographical Ordering Matters). Here we apply the 7 = 0 reduc-
tion method to the RNA structure 3DIG from the Protein Data Bank [28] 27] (see
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V),

38141 50 55 384042 5052 |55
142 54 i
Interior
Bulges

Loops

F1GURE 7. RNA structure with bpRNA reference name PDB_455 and
PDB reference name 3DIG. Structures such as nestings not relevant
for the discussion have been omitted for clarity.

Figure [7)). There are two choices for a minimum-cardinality minimum-weight ver-
tex cover, here of cardinality three. Namely, both covers contain the two segments
highlighted in red, and differ by whether the cover contains segment {(40,52)} or
segment {(41,54)}. Removing either cover yields a chord diagram with no cross-
ings, and finding the secondary structures, we may obtain two different pseudoknot
types depending on the cover removed. If we remove the cover containing segment
{(40,52)}, then the pseudoknot corresponding to {(40,52)} connects a bulge to a
bulge. However if instead we remove the cover containing segment {(41,54)} then
the pseudoknot corresponding to {(41,54)} connects an interior loop to another in-
terior loop. As a result, the two choices for a vertex cover have a different effect on
the secondary structure classification and consequently pseudoknot typing.

4. DISCUSSION

We applied the 7-Segment Graph Method with 7 = 0 to independently verify the
quantities reported in bpRNA-1m(90) [12]. By Definition structures are pseu-
doknotted when their segment graphs contain at least one edge, and the number
of pseudoknots is quantified by the minimum cardinalities of vertex covers of mini-
mum weight. In agreement with [12], we obtained 3,320 graphs containing at least
one edge in Gs from RNA structures and a total quantity of 7,164 pseudoknots,
as determined by the sum over the cardinalities of the vertex covers. Applying the
7-Segment Graph Method with 7 = oo (the augmented segment graph method) for
every structure in bpRNA-1m(90), we found found a minimum vertex cover for each
structure. The number of pseudoknots (the sum of vertex cover numbers over all
graphs) was 6,548 with this method.
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With 7 = 0, we found 31 unique RNA structures containing 13 or more pseu-
doknots. These structures are listed in Table [I When the method was applied
with 7 = 0o, we found that the same 31 structures contained the most pseudoknots
amongst all structures in the database. With the exception of the last structure,
Oceanobacillus iheyensis, from 7 = 0 to 7 = oo there was a uniform decrease in
pseudoknotting by two that resulted from a single 3-crossing being consolidated into
one segment by 7-reduction. This uniformity in behavior is explained by the fact
that all but the last structure are of type 23S prokaryotic ribosomal RNA | originating
in various bacterial organisms [14].

Over the entire bpRNA-1m(90) database, a total of 573 structures had a decrease
in numbers of pseudoknots when analyzed with the 7 = oo versus 7 = 0 methods.
Of these, 531 structures decreased in quantity of pseudoknots by 1, 41 structures by
2, and 1 structure decreased by 3 (bpRNA_CRW _55316, Plasmodium falciparum).
Of the 41 structures which decreased by 2, there were 6 unique RNA types with 36
of them being of type 23S. Structures that changed from having a nonzero quantity
of pseudoknots to zero pseudoknots are shown in Table 2 Of these, one structure
(Homo sapiens) decreased from 2 to 0 pseudoknots. All other structures decreased
from 1 to 0 pseudoknots.

4.1. Maximum Values of 7 and Persistence of Partitions. Let 7 > 1. As
distances between chords are finite, there is a minimum value of 7, say 7,,, such that
for any 7, > 7, the 7,-segment partition and the 7,,-segment partition are identical.
The quantity 7, is precisely the minimum value of 7 such that the 7-segment partition
is equivalent to the augmented segment partition. For all structures in bpRNA-
1m(90), we calculate 7, by first finding the augmented segment partition, and then
finding the 7-segment partition for each 7 > 0 until the 7-segment partition is equal
to the augmented segment partition. We find that the average 7, is 13.035 and the
median is 8. The mean absolute deviation is 10.96 and the median absolute deviation
is 2. There are 323 structures with 7, at least 17, and 33 structures with 7, at least
100.

Structures with large 7, contain correspondingly large bulges and internal loops;
large 7, results from large gaps between chords which are nested but not 7-near for
many values of 7. See for example Figure [IT] We verified this by keeping track of 7-
segment partitions during the process of calculating 7,,. In sum, persistent 7-segment
partitions are indicative of large bulges and internal loops.

4.2. Classifying Bases. We implemented the classifyBases routine with 7 = 0
to analyze secondary structures and compare quantities obtained from the bpRNA-
1m database (see also [12, Figure 8b]). Quantities are shown in Table [12] (left). We
observed slight discrepancies in pseudoknot type counts, though the general shape
of the distribution is the same. The discrepancies with the 7 = 0 method arise from
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the labeling of multiloops and external loops, as some structures in [12] have bases
in the external loop that are labeled as a multiloop base. This is a bpRNA software
bug that has since been fixed in a fork of [I0]. The structure bpRNA_CRW_10025
is one example in which the secondary structure labeling is incorrect; bases 357,
385-393, 433-440, 604-633, 690-695, and 728-742 are labeled as part of a multiloop
in bpRNA-1m, but by our definition they are part of the exterior loop. Note that
the counts of pseudoknot types in Figure [12| (left) differ only when an exterior loop
or multiloop is part of the pseudoknot type. Figure (right) shows a comparison
of pseudoknot type counts between the 7 = 0 method and the 7 = co method.

4.3. Calculation of Genus and Clique Numbers. After implementing the 7-
segment graph method with 7 = 0 and 7 = oo we calculated the genus and maximum
clique numbers of Dg and D4 and the segment graphs Gs and G4 respectively in
MATLAB. The results are reported in Figure [I3] Table [3] and Figure [I4 Out of
3,320 segment graphs, 3,208 are forests, and out of 3,320 augmented segment graphs,
3,210 are forests. Table 4| shows the frequency of forests with a given maximum tree
size. This is important to note in the context of using genus and vertex covers for
pseudoknot quantification. By Theorem [2.6] if the intersection graph of a chord
diagram D is a forest F', then the genus (D) is equal to S(F). That is, for acyclic
intersection graphs, an increase in genus implies an increase in the vertex cover. From
this, we see that the genus of a corresponding chord diagram of an RNA structure
is a robust quantifier of pseudoknot complexity. This is further supported by the
bubble charts in Figure [I4]
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APPENDIX

C,T

v

segments = findSegments(C,7)

v

}

Segments
cross?
v
Yes No i
T =07 classifyBases(segments)
v v v
min card over min weight min weight over min card List of base t
£indPKs(segments) £indPKs(segments) H15 @F [DEHEID) 100k
v v

C =C-P PK list Stop.
T = 00 PK chords P Report secondary structure.

v

Stop.
Report PK structure.

FiGURE 8. A flow chart summarizing the the pseudoknot and sec-
ondary structure identification and quantification process described in

Section 3.2
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Pseudoknot Counts

T T T T T T I # PK Gs
L,500 | [ EmGs | 0 0
Gy 1 1509
2 770
g 3 | 433
=
£ 1,000 |- . 4 548
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n 6 3
= 7 0
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2t 500 8 2
SIS - 9 2
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11 2
12 1
O | | | | I s s s e 1 2
0o 2 4 6 8 10 12 14 12 -
# PK in RNA
15 1
FIGURE 9. A comparison of total number of pseudoknots between the
segment graph method (7 = 0) and augmented segment graph method
(1 = 00.) For each method, the number of structures containing r
pseudoknots is given.
1D Domain Organism Gs G4 1D Domain Organism
CRW_55315 Eukaryota Euglena gracilis 15 13
CRW_55268 Bacteria  Acinetobacter calcoaceticus 14 12 . — :
. . . CRW_55297 Bacteria  Listeria monocytogenes
CRW_55269 Bacteria  Aeromonas hydrophila 14 12 CRwW 55298 Bacteria  Listeria monocytoienes
CRW_55271 Bacteria Bartonella bacilliformis 14 12 CRVV755299 Bacteria Mycoplasma génit:lium
CRW_55275 Bacteria Burkholderia mallei 14 12 CR\V?553OVS Bac:tc:ria :\Téis:Scria gonor}huvew
CRW.55276  Bacteria Bordetella pertussis 14 12 CRV\'})S‘SOS Bacteria I’seu}lomonas aeruginosa
CRW_55279 Bacteria  Clostridium botulinum B 14 12 CRVV:553OG Bacteria  Plesiomonas shigeli)ides
CR\/\:,55283 Bacteria  Citrobacter freundii 14 12 CRW 55307 Bacteria  Ruminobacter amylophilus
CRW,’55284 B*“”“’rfa Campylobac@r jejumt - 412 CRwW 55308 Bacteria  Rickettsia prowazekii (str. Madrid E)
CRW_55285 Bacteria  Chlamydophila psittaci 6BC 14 12 cRW.55312 Bacteria Staphylococcus carnosus
CRW_55287 Bacteria  Deinococcus radiodurans 14 12 CRV\':55313 Bac:téria '1‘hérr£10togé n;aritime; ;
CRW.55290 Bacteria Enterococcus faccalis 412 CRW_55314 Eukaryota Chlamydomonas reinhardtii

CRW_55291 Bacteria  Erysipelothrix rhusiopathiae (str. 715) 14 12 CRW 55317
CRW_55292 Bacteria ~ Haemophilus influenzae (operons A-F) 14 12 CRV\':55338
CRW_55295 Bacteria  Leptospira interrogans 14 12 CRW _55270
CRW_55296 Bacteria  Lactococcus lactis 14 12 ppp g7

Eukaryota Spinacia oleracea
Eukaryota Cyanophora paradoxa
Bacteria  Bacillus anthracis
Bacteria  Oceanobacillus iheyensis

TABLE 1. The 31 RNA structures with at least 13 pseudoknots when
analyzed with the segment graph method. The rightmost column com-
pares the number of pseudoknots in each structure via the 7-segment

graph method with 7 = oco. All structures with the exception of
PDB_647 are RNA type 23S ribosomal RNA.
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D Domain  Organism Length Method 1D Domain Organism Length Method
CRW_1213  Bacteria Actinomyces israelii 734 CSA :
CRW.1219 Bacter?a Actu.jomyces israelii 1145 CSA CRW_4401 Bacteria Streptomyces mobaraensis 1197 CSA
CR‘V’IE’E? B:d(:ter}‘a ClavlbaL:tér sp‘. R12.cr 476 CSA CRW_4409 Bacteria Streptomyces olivoreticuli 1216 CSA
CR“{’HZ{ B‘“ter?d Arthrobd%ter sp. 300 CSA CRW_4416 Bacteria Streptomyces salmonis 1136 CSA
CRW,JWB Bacter?a Lachnospira multipara . 917 CSA CRW_4449 Bacteria coryneform actinomycete B755 679 CSA
CRW_17729 Bacteria Moorella thermoautotrophica 869 CSA CRW_4908 Bacteria Acidocella facilis 922 CSA
CRW_17730 Bacteria Moorella thermoautotrophica 821 CSA CRW_1910 Bacteria Acidiphilium angustum 977 CSA
CRW_17811 Bacteria Thermoanaerobacter acetoethylicus 770 CSA CRW_4918 Bacteria Acidiphilium sp. 944 CSA
CR“,’”SQ?) Ba . Thermoanﬁerohmter. ethanolicus . 650 C8A CRW_7455 Bacteria unidentified eubacterium 37SW-1 277 CSA
CRW_17834 Bacteria Thermoanaecrobacterium thermosulfurigenes 930 CSA CRW_7488 Bacteria Proteobacteria sp 484 CSA
CRW.20267 Bacter%a Marigold phyHod.y phytoplasma 1015 CSA CRW_7494 Bacteria uncultured alpha proteobacterium 410 CSA
CRW.20554 Bacter}a Mycoplasma collis . . 372 CSA CRW_7502 Bacteria uncultured alpha proteobacterium 222 CSA
CRW_20606 Bacteria Beet leafhopper transmitted virescence phytoplasma 700 CSA CRW._7614 Bacteria Nitrobacter sp. 452 CSA
CRW_20626 Bacteria Potato witches’-broom phytoplasma, 658 CSA CRW_7802 Bacteria Rhodovulum euryhalinum 1138 CSA
CRW_20629 Bacteria Paulownia witches’-broom phytoplasma 698 CSA CRW_7938 Bacteria Sphingomonas asaccharolytica 629 CSA
CRW.3719  Bacteria Actinomycetales sp. 42 OSA CRWs046 Bacteria uncultured alpha proteobacterium 751  CSA
CRW.3726  Bacteria Actinomycetales s 503 CSA CRWS048 Bacteria uncultured alpha proteobacterium 730 CSA
CRW.3729 Bactcr?a Actmomycctalc 502 CgA CRW_8050 Bacteria uncultured alpha proteobacterium 690 CSA
E?CLZ:;Z fftggz:“;zﬁ:::? S::\.opi 312 g;i PDB_567  artificial sequences synthetic construct 35 X-RAY
2 Iycobacte xel - -
CRW_4363  Bacteria Streptomyces abikoensis 1177 CSA PDB512 Eukaryota Homo sapiens 12 XRAY

TABLE 2. The 40 RNA structures with nonzero quantity of pseudo-
knots when analyzed with the segment graph method but zero pseu-
doknots using 7 = oo segment graph method. One structure (Homo

sapiens) decreased from 2 to 0 pseudoknots.

creased from 1 to 0 pseudoknots.
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# RNA Structures

400 -
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All other structures de-
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4 6 8 10 12

# of Unique 7-Segment Partitions

FIGURE 10. Left: Distribution of 7,, over all RNA structures in
bpRNA-1m(90) restricted to values of 7, within one and a half stan-

dard deviations from the mean.
unique 7-segment partitions.

Right: Distribution of number of

14 16
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k !
218 335

FiGURE 11. The RNA structure bpRNA_RFAM 4761 is an example

of a structure with large 7,,, = 117 resulting from an interior loop.

PK type | bpRNA-Im | Gg PK type | Gs | G4
E-E 0 0 E-E 0 0
E-X 0 0 E-X 0 0
X-X 0 0 X-X 0 0
B-B 6 6 B-B 6 5

I-1 9 9 I-I 9 7
B-E 10 10 B-E 10 8
M 49 48 M 48 48
E-M 53 53 E-M 53 54
I-X 57 58 I-X 58 60
E-1 64 64 E-1 64 57
M-X 100 104 M-X 104 | 102

B-1 153 153 B-I 153 | 82
B-X 158 169 B-X 169 5

H-1 194 194 H-1 194 | 196
H-H 261 261 H-H 261 258
B-M 377 366 B-M 366 9
E-H 588 588 E-H 588 | 584
H-X 670 847 M-M 707 | 705
M-M 711 707 H-X 847 | 845
B-H 1826 1826 H-M 1701 | 1699
H-M 1878 1701 B-H 1826 | 1824

FIGURE 12. (Left) A comparison of counts of pseudoknot types re-
ported in bpRNA-1m versus our Gs method with 7 = 0. Discrepancies
result from a known bug in the bpRNA software. (Right) A compari-
son of counts of pseudoknot types using our Gs and G_4 methods with
7 =0 and 7 = 00, respectively.
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FIGURE 13. A comparison of the genus of the segment graph and the

augmented segment graph.

w(@) ] Gs | Ga
I | 0 | 40
9 [ 3214 | 3177
3 | 60 | 96
i | 46 | 7

TABLE 3. The frequency of clique numbers for segment and aug-

mented segment graphs.

23
Genus | Ds | Dy
0 0 40
1 1536 | 1558
2 747 841
3 434 | 548
4 547 | 277
5 15 17
6 3 2
7 2 2
8 2 4
9 2 0
10 1 2
11 2 28
12 28 1
13 1 0

Max Tree Order | Gs | G4 Max Tree Order | Gs | G4
1 0 | 40 7 6| 6
2 1449 | 1410 8 77
3 998 | 999 9 77
4 637 | 637 10 1 1
5 27 27 11 3 3
6 71 | 71 12 2 | 2
TABLE 4. For each segment and augmented segment grap]

forest, we calculate the maximum order of a tree component.

h that is a
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FIGURE 14. Two bubble chart comparisons. Left: Comparison be-
tween genera of the chord diagrams Ds and pseudoknot count via the
7 = 0 method. Right: Comparison between genera of the chord dia-
grams D 4 and pseudoknot count via the 7 = oo method.
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